Data-Driven Risk Modeling for Infrastructure Projects Using Artificial
Intelligence Techniques
- URL: http://arxiv.org/abs/2311.14203v1
- Date: Thu, 23 Nov 2023 21:02:54 GMT
- Title: Data-Driven Risk Modeling for Infrastructure Projects Using Artificial
Intelligence Techniques
- Authors: Abdolmajid Erfani
- Abstract summary: This study introduces a data-driven framework to identify risks automatically and to examine the quality of early risk registers and risk assessments.
Risk registers from more than 70 U.S. major transportation projects form the input dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Managing project risk is a key part of the successful implementation of any
large project and is widely recognized as a best practice for public agencies
to deliver infrastructures. The conventional method of identifying and
evaluating project risks involves getting input from subject matter experts at
risk workshops in the early phases of a project. As a project moves through its
life cycle, these identified risks and their assessments evolve. Some risks are
realized to become issues, some are mitigated, and some are retired as no
longer important. Despite the value provided by conventional expert-based
approaches, several challenges remain due to the time-consuming and expensive
processes involved. Moreover, limited is known about how risks evolve from
ex-ante to ex-post over time. How well does the project team identify and
evaluate risks in the initial phase compared to what happens during project
execution? Using historical data and artificial intelligence techniques, this
study addressed these limitations by introducing a data-driven framework to
identify risks automatically and to examine the quality of early risk registers
and risk assessments. Risk registers from more than 70 U.S. major
transportation projects form the input dataset.
Related papers
- Risks and NLP Design: A Case Study on Procedural Document QA [52.557503571760215]
We argue that clearer assessments of risks and harms to users will be possible when we specialize the analysis to more concrete applications and their plausible users.
We conduct a risk-oriented error analysis that could then inform the design of a future system to be deployed with lower risk of harm and better performance.
arXiv Detail & Related papers (2024-08-16T17:23:43Z) - EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EAIRiskBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Privacy Risks of General-Purpose AI Systems: A Foundation for Investigating Practitioner Perspectives [47.17703009473386]
Powerful AI models have led to impressive leaps in performance across a wide range of tasks.
Privacy concerns have led to a wealth of literature covering various privacy risks and vulnerabilities of AI models.
We conduct a systematic review of these survey papers to provide a concise and usable overview of privacy risks in GPAIS.
arXiv Detail & Related papers (2024-07-02T07:49:48Z) - AI and the Iterable Epistopics of Risk [1.26404863283601]
The risks AI presents to society are broadly understood to be manageable through general calculus.
This paper elaborates how risk is apprehended and managed by a regulator, developer and cyber-security expert.
arXiv Detail & Related papers (2024-04-29T13:33:22Z) - GUARD-D-LLM: An LLM-Based Risk Assessment Engine for the Downstream uses of LLMs [0.0]
This paper explores risks emanating from downstream uses of large language models (LLMs)
We introduce a novel LLM-based risk assessment engine (GUARD-D-LLM) designed to pinpoint and rank threats relevant to specific use cases derived from text-based user inputs.
Integrating thirty intelligent agents, this innovative approach identifies bespoke risks, gauges their severity, offers targeted suggestions for mitigation, and facilitates risk-aware development.
arXiv Detail & Related papers (2024-04-02T05:25:17Z) - The WMDP Benchmark: Measuring and Reducing Malicious Use With Unlearning [87.1610740406279]
White House Executive Order on Artificial Intelligence highlights the risks of large language models (LLMs) empowering malicious actors in developing biological, cyber, and chemical weapons.
Current evaluations are private, preventing further research into mitigating risk.
We publicly release the Weapons of Mass Destruction Proxy benchmark, a dataset of 3,668 multiple-choice questions.
arXiv Detail & Related papers (2024-03-05T18:59:35Z) - RiskBench: A Scenario-based Benchmark for Risk Identification [4.263035319815899]
This work focuses on risk identification, the process of identifying and analyzing risks stemming from dynamic traffic participants and unexpected events.
We introduce textbfRiskBench, a large-scale scenario-based benchmark for risk identification.
We assess the ability of ten algorithms to (1) detect and locate risks, (2) anticipate risks, and (3) facilitate decision-making.
arXiv Detail & Related papers (2023-12-04T06:21:22Z) - Risk Analysis in the Selection of Project Managers Based on ANP and FMEA [0.0]
This research aims to identify risks in selecting project managers for civil engineering projects, utilizing a combined ANP-FMEA approach.
The results highlighted that the lack of political influence, absence of construction experience, and deficiency in project management expertise represent the most substantial risks in selecting a project manager.
arXiv Detail & Related papers (2023-11-06T16:08:10Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - Quantitative AI Risk Assessments: Opportunities and Challenges [9.262092738841979]
AI-based systems are increasingly being leveraged to provide value to organizations, individuals, and society.
Risks have led to proposed regulations, litigation, and general societal concerns.
This paper explores the concept of a quantitative AI Risk Assessment.
arXiv Detail & Related papers (2022-09-13T21:47:25Z) - A Survey of Risk-Aware Multi-Armed Bandits [84.67376599822569]
We review various risk measures of interest, and comment on their properties.
We consider algorithms for the regret minimization setting, where the exploration-exploitation trade-off manifests.
We conclude by commenting on persisting challenges and fertile areas for future research.
arXiv Detail & Related papers (2022-05-12T02:20:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.