The WMDP Benchmark: Measuring and Reducing Malicious Use With Unlearning
- URL: http://arxiv.org/abs/2403.03218v7
- Date: Wed, 15 May 2024 19:16:09 GMT
- Title: The WMDP Benchmark: Measuring and Reducing Malicious Use With Unlearning
- Authors: Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D. Li, Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, Gabriel Mukobi, Nathan Helm-Burger, Rassin Lababidi, Lennart Justen, Andrew B. Liu, Michael Chen, Isabelle Barrass, Oliver Zhang, Xiaoyuan Zhu, Rishub Tamirisa, Bhrugu Bharathi, Adam Khoja, Zhenqi Zhao, Ariel Herbert-Voss, Cort B. Breuer, Samuel Marks, Oam Patel, Andy Zou, Mantas Mazeika, Zifan Wang, Palash Oswal, Weiran Lin, Adam A. Hunt, Justin Tienken-Harder, Kevin Y. Shih, Kemper Talley, John Guan, Russell Kaplan, Ian Steneker, David Campbell, Brad Jokubaitis, Alex Levinson, Jean Wang, William Qian, Kallol Krishna Karmakar, Steven Basart, Stephen Fitz, Mindy Levine, Ponnurangam Kumaraguru, Uday Tupakula, Vijay Varadharajan, Ruoyu Wang, Yan Shoshitaishvili, Jimmy Ba, Kevin M. Esvelt, Alexandr Wang, Dan Hendrycks,
- Abstract summary: White House Executive Order on Artificial Intelligence highlights the risks of large language models (LLMs) empowering malicious actors in developing biological, cyber, and chemical weapons.
Current evaluations are private, preventing further research into mitigating risk.
We publicly release the Weapons of Mass Destruction Proxy benchmark, a dataset of 3,668 multiple-choice questions.
- Score: 87.1610740406279
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The White House Executive Order on Artificial Intelligence highlights the risks of large language models (LLMs) empowering malicious actors in developing biological, cyber, and chemical weapons. To measure these risks of malicious use, government institutions and major AI labs are developing evaluations for hazardous capabilities in LLMs. However, current evaluations are private, preventing further research into mitigating risk. Furthermore, they focus on only a few, highly specific pathways for malicious use. To fill these gaps, we publicly release the Weapons of Mass Destruction Proxy (WMDP) benchmark, a dataset of 3,668 multiple-choice questions that serve as a proxy measurement of hazardous knowledge in biosecurity, cybersecurity, and chemical security. WMDP was developed by a consortium of academics and technical consultants, and was stringently filtered to eliminate sensitive information prior to public release. WMDP serves two roles: first, as an evaluation for hazardous knowledge in LLMs, and second, as a benchmark for unlearning methods to remove such hazardous knowledge. To guide progress on unlearning, we develop RMU, a state-of-the-art unlearning method based on controlling model representations. RMU reduces model performance on WMDP while maintaining general capabilities in areas such as biology and computer science, suggesting that unlearning may be a concrete path towards reducing malicious use from LLMs. We release our benchmark and code publicly at https://wmdp.ai
Related papers
- Mitigating Backdoor Threats to Large Language Models: Advancement and Challenges [46.032173498399885]
Large Language Models (LLMs) have significantly impacted various domains, including Web search, healthcare, and software development.
As these models scale, they become more vulnerable to cybersecurity risks, particularly backdoor attacks.
arXiv Detail & Related papers (2024-09-30T06:31:36Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - GUARD-D-LLM: An LLM-Based Risk Assessment Engine for the Downstream uses of LLMs [0.0]
This paper explores risks emanating from downstream uses of large language models (LLMs)
We introduce a novel LLM-based risk assessment engine (GUARD-D-LLM) designed to pinpoint and rank threats relevant to specific use cases derived from text-based user inputs.
Integrating thirty intelligent agents, this innovative approach identifies bespoke risks, gauges their severity, offers targeted suggestions for mitigation, and facilitates risk-aware development.
arXiv Detail & Related papers (2024-04-02T05:25:17Z) - Threats, Attacks, and Defenses in Machine Unlearning: A Survey [14.03428437751312]
Machine Unlearning (MU) has recently gained considerable attention due to its potential to achieve Safe AI.
This survey aims to fill the gap between the extensive number of studies on threats, attacks, and defenses in machine unlearning.
arXiv Detail & Related papers (2024-03-20T15:40:18Z) - Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal [0.0]
We propose a risk assessment process using tools like the risk rating methodology which is used for traditional systems.
We conduct scenario analysis to identify potential threat agents and map the dependent system components against vulnerability factors.
We also map threats against three key stakeholder groups.
arXiv Detail & Related papers (2024-03-20T05:17:22Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
Machine learning (ML) sees an increasing prevalence of being used in the internet-of-things (IoT)-based smart grid.
adversarial distortion injected into the power signal will greatly affect the system's normal control and operation.
It is imperative to conduct vulnerability assessment for MLsgAPPs applied in the context of safety-critical power systems.
arXiv Detail & Related papers (2023-08-30T03:29:26Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation.
Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation in the performance of Open-Domain Question Answering (ODQA) systems.
arXiv Detail & Related papers (2023-05-23T04:10:26Z) - Safe Exploration by Solving Early Terminated MDP [77.10563395197045]
We introduce a new approach to address safe RL problems under the framework of Early TerminatedP (ET-MDP)
We first define the ET-MDP as an unconstrained algorithm with the same optimal value function as its corresponding CMDP.
An off-policy algorithm based on context models is then proposed to solve the ET-MDP, which thereby solves the corresponding CMDP with better performance and improved learning efficiency.
arXiv Detail & Related papers (2021-07-09T04:24:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.