論文の概要: Segmentation-Based Parametric Painting
- arxiv url: http://arxiv.org/abs/2311.14271v1
- Date: Fri, 24 Nov 2023 04:15:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-27 16:01:41.193675
- Title: Segmentation-Based Parametric Painting
- Title(参考訳): セグメンテーションによるパラメトリックペイント
- Authors: Manuel Ladron de Guevara, Matthew Fisher, Aaron Hertzmann
- Abstract要約: 本研究では,人間のような質とスタイルのバリエーションを持つ大規模で高忠実な絵画の作成を容易にする,新しい画像から絵画へのアプローチを提案する。
我々は,人間の絵画戦略に触発されたセグメンテーションに基づく絵画プロセスとダイナミックアテンションマップアプローチを導入する。
最適化されたバッチ処理とパッチベースの損失フレームワークは、大きなキャンバスの効率的な処理を可能にします。
- 参考スコア(独自算出の注目度): 22.967620358813214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel image-to-painting method that facilitates the creation
of large-scale, high-fidelity paintings with human-like quality and stylistic
variation. To process large images and gain control over the painting process,
we introduce a segmentation-based painting process and a dynamic attention map
approach inspired by human painting strategies, allowing optimization of brush
strokes to proceed in batches over different image regions, thereby capturing
both large-scale structure and fine details, while also allowing stylistic
control over detail. Our optimized batch processing and patch-based loss
framework enable efficient handling of large canvases, ensuring our painted
outputs are both aesthetically compelling and functionally superior as compared
to previous methods, as confirmed by rigorous evaluations. Code available at:
https://github.com/manuelladron/semantic\_based\_painting.git
- Abstract(参考訳): 本研究では,人間のような質とスタイルのバリエーションを持つ大規模で高忠実な絵画の作成を容易にする,新しい画像から絵画へのアプローチを提案する。
大規模な画像処理と絵画処理の制御を実現するため,人間の絵画戦略にインスパイアされたセグメンテーションベースの絵画プロセスとダイナミックアテンションマップアプローチを導入し,ブラシストロークの最適化をさまざまな画像領域のバッチで行なえるようにし,大規模構造と細部の両方を捉えるとともに,細部をスタイリスティックに制御する。
より厳密な評価によって確認されたように,我々の最適化されたバッチ処理とパッチベースの損失フレームワークにより,大きなキャンバスの効率的な処理が可能となり,塗装された出力が従来の方法に比べて美的かつ機能的に優れていることが保証された。
コード提供: https://github.com/manuelladron/semantic\_based\_painting.git
関連論文リスト
- PrefPaint: Aligning Image Inpainting Diffusion Model with Human Preference [62.72779589895124]
画像インペイントのための拡散モデルと人間の審美基準との整合性を、強化学習フレームワークを用いて初めて試みる。
我々は、人間の好みを付加した約51,000枚の画像からなるデータセットで報酬モデルを訓練する。
画像拡張や3次元再構成などの下流タスクの塗装比較実験により, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-10-29T11:49:39Z) - Sketch-guided Image Inpainting with Partial Discrete Diffusion Process [5.005162730122933]
スケッチ誘導インペイントのための新しい部分離散拡散法(PDDP)を提案する。
PDDPは画像のマスキング領域を破損させ、手描きスケッチで条件付けられたこれらのマスキング領域を再構築する。
提案するトランスモジュールは,2つの入力を受信する。マスク領域を含む画像はインペイントされ,クエリスケッチは逆拡散過程をモデル化する。
論文 参考訳(メタデータ) (2024-04-18T07:07:38Z) - HD-Painter: High-Resolution and Prompt-Faithful Text-Guided Image Inpainting with Diffusion Models [59.01600111737628]
HD-Painterはトレーニングフリーのアプローチで、プロンプトを正確に追従し、高解像度の画像インパインティングにコヒーレントにスケールする。
そこで我々は,自己注意スコアを向上するPrompt-Aware Introverted Attention (PAIntA) 層を設計した。
実験の結果,HD-Painterは既存の最先端アプローチを定量的に,質的に超越していることがわかった。
論文 参考訳(メタデータ) (2023-12-21T18:09:30Z) - Stroke-based Neural Painting and Stylization with Dynamically Predicted
Painting Region [66.75826549444909]
ストロークベースのレンダリングは、ストロークのセットで画像を再現することを目的としている。
本研究では,現在のキャンバスに基づいて絵画領域を予測する合成ニューラルネットワークを提案する。
我々は、新しい微分可能な距離変換損失を伴って、ストロークベースのスタイル転送に拡張する。
論文 参考訳(メタデータ) (2023-09-07T06:27:39Z) - Perceptual Artifacts Localization for Inpainting [60.5659086595901]
そこで本研究では,知覚的アーティファクトの自動セグメンテーションの学習タスクを提案する。
データセット上で高度なセグメンテーションネットワークをトレーニングし、インペイントされた画像内のインペイントされたアーティファクトを確実にローカライズする。
また, 対象領域と対象領域全体との比率である知覚人工物比 (PAR) という新しい評価指標を提案する。
論文 参考訳(メタデータ) (2022-08-05T18:50:51Z) - Cylin-Painting: Seamless {360\textdegree} Panoramic Image Outpainting
and Beyond [136.18504104345453]
塗り絵と塗り絵の間に有意義な協調関係を持つキリン塗り絵の枠組みを提示する。
提案アルゴリズムは、オブジェクト検出、深さ推定、画像超解像などの他のパノラマ視覚タスクに効果的に拡張できる。
論文 参考訳(メタデータ) (2022-04-18T21:18:49Z) - Improve Deep Image Inpainting by Emphasizing the Complexity of Missing
Regions [20.245637164975594]
本稿では,古典的画像複雑性メトリクスの助けを借りて,ディープイメージのインペイントモデルを強化する。
学習手順におけるバッチ選択を導くために、不足複雑性と前方損失からなる知識支援指標を示す。
我々は,最近開発された様々なデータセットに対する画像インペイントモデルの改良を実験的に実証した。
論文 参考訳(メタデータ) (2022-02-13T09:14:52Z) - A Wasserstein GAN for Joint Learning of Inpainting and its Spatial
Optimisation [3.4392739159262145]
空間的インペイントデータ最適化のための最初の生成逆ネットワークを提案する。
従来のアプローチとは対照的に、着色発電機とそれに対応するマスクネットワークのジョイントトレーニングが可能である。
これにより、従来のモデルよりも視覚的品質とスピードが大幅に向上し、現在の最適化ネットワークよりも優れています。
論文 参考訳(メタデータ) (2022-02-11T14:02:36Z) - Semantic Layout Manipulation with High-Resolution Sparse Attention [106.59650698907953]
本稿では,意味ラベルマップを編集して入力画像を操作するセマンティックイメージレイアウト操作の課題に対処する。
このタスクの中核的な問題は、視覚的にイメージを現実的にしながら、入力画像から新しいセマンティックレイアウトに視覚的な詳細を転送する方法です。
512×512の解像度で視覚的詳細を新しいレイアウトに効果的に転送する高分解能スパースアテンションモジュールを提案する。
論文 参考訳(メタデータ) (2020-12-14T06:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。