論文の概要: Improve Deep Image Inpainting by Emphasizing the Complexity of Missing
Regions
- arxiv url: http://arxiv.org/abs/2202.06266v1
- Date: Sun, 13 Feb 2022 09:14:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-15 17:25:13.332980
- Title: Improve Deep Image Inpainting by Emphasizing the Complexity of Missing
Regions
- Title(参考訳): 欠落領域の複雑さを強調した深部画像インパインティングの改善
- Authors: Yufeng Wang, Dan Li, Cong Xu and Min Yang
- Abstract要約: 本稿では,古典的画像複雑性メトリクスの助けを借りて,ディープイメージのインペイントモデルを強化する。
学習手順におけるバッチ選択を導くために、不足複雑性と前方損失からなる知識支援指標を示す。
我々は,最近開発された様々なデータセットに対する画像インペイントモデルの改良を実験的に実証した。
- 参考スコア(独自算出の注目度): 20.245637164975594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep image inpainting research mainly focuses on constructing various neural
network architectures or imposing novel optimization objectives. However, on
the one hand, building a state-of-the-art deep inpainting model is an extremely
complex task, and on the other hand, the resulting performance gains are
sometimes very limited. We believe that besides the frameworks of inpainting
models, lightweight traditional image processing techniques, which are often
overlooked, can actually be helpful to these deep models. In this paper, we
enhance the deep image inpainting models with the help of classical image
complexity metrics. A knowledge-assisted index composed of missingness
complexity and forward loss is presented to guide the batch selection in the
training procedure. This index helps find samples that are more conducive to
optimization in each iteration and ultimately boost the overall inpainting
performance. The proposed approach is simple and can be plugged into many deep
inpainting models by changing only a few lines of code. We experimentally
demonstrate the improvements for several recently developed image inpainting
models on various datasets.
- Abstract(参考訳): 深部画像インパインティング研究は主に、様々なニューラルネットワークアーキテクチャを構築したり、新しい最適化目標を設定することに焦点を当てている。
しかしながら、最先端の深層塗装モデルの構築は極めて複雑な作業であり、その一方で、結果として得られるパフォーマンス向上は、非常に限定的な場合もある。
私たちは、塗装モデルのフレームワーク以外に、しばしば見過ごされる軽量な伝統的な画像処理技術が、これらの深層モデルに実際に役立つと信じています。
本稿では,古典的画像複雑度指標を用いて,奥行き画像のインペインティングモデルを強化する。
学習手順におけるバッチ選択を導くために、不足複雑性と前方損失からなる知識支援指標を示す。
このインデックスは、各イテレーションでより最適化しやすいサンプルを見つけ、最終的に全体的なペイントパフォーマンスを高めるのに役立つ。
提案されたアプローチは単純で、数行のコードだけを変更して、多くの深い塗装モデルにプラグインすることができる。
我々は,最近開発された各種データセット上の画像インペインティングモデルの改良を実験的に実証する。
関連論文リスト
- PrefPaint: Aligning Image Inpainting Diffusion Model with Human Preference [62.72779589895124]
画像インペイントのための拡散モデルと人間の審美基準との整合性を、強化学習フレームワークを用いて初めて試みる。
我々は、人間の好みを付加した約51,000枚の画像からなるデータセットで報酬モデルを訓練する。
画像拡張や3次元再構成などの下流タスクの塗装比較実験により, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-10-29T11:49:39Z) - Segmentation-Based Parametric Painting [22.967620358813214]
本研究では,人間のような質とスタイルのバリエーションを持つ大規模で高忠実な絵画の作成を容易にする,新しい画像から絵画へのアプローチを提案する。
我々は,人間の絵画戦略に触発されたセグメンテーションに基づく絵画プロセスとダイナミックアテンションマップアプローチを導入する。
最適化されたバッチ処理とパッチベースの損失フレームワークは、大きなキャンバスの効率的な処理を可能にします。
論文 参考訳(メタデータ) (2023-11-24T04:15:10Z) - T-former: An Efficient Transformer for Image Inpainting [50.43302925662507]
トランスフォーマーと呼ばれる注目に基づくネットワークアーキテクチャのクラスは、自然言語処理の分野で大きなパフォーマンスを示している。
本稿では,Taylorの展開に応じて,解像度に線形に関連付けられた新たな注意を設計し,この注意に基づいて,画像インペイントのためのネットワークである$T$-formerを設計する。
いくつかのベンチマークデータセットの実験により,提案手法は比較的少ないパラメータ数と計算複雑性を維持しつつ,最先端の精度を達成できることが示されている。
論文 参考訳(メタデータ) (2023-05-12T04:10:42Z) - GRIG: Few-Shot Generative Residual Image Inpainting [27.252855062283825]
そこで本研究では,高画質な残像塗装法を新たに提案する。
中心となる考え方は、特徴抽出のために畳み込みニューラルネットワーク(CNN)を組み込んだ反復的残留推論手法を提案することである。
また, 忠実なテクスチャと詳細な外観を創出するための, フォージェリーパッチ対逆訓練戦略を提案する。
論文 参考訳(メタデータ) (2023-04-24T12:19:06Z) - Perceptual Artifacts Localization for Inpainting [60.5659086595901]
そこで本研究では,知覚的アーティファクトの自動セグメンテーションの学習タスクを提案する。
データセット上で高度なセグメンテーションネットワークをトレーニングし、インペイントされた画像内のインペイントされたアーティファクトを確実にローカライズする。
また, 対象領域と対象領域全体との比率である知覚人工物比 (PAR) という新しい評価指標を提案する。
論文 参考訳(メタデータ) (2022-08-05T18:50:51Z) - MAT: Mask-Aware Transformer for Large Hole Image Inpainting [79.67039090195527]
本稿では, 変圧器と畳み込みの利点を統一する, 大穴塗装の新しいモデルを提案する。
実験では、複数のベンチマークデータセット上で、新しいモデルの最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2022-03-29T06:36:17Z) - Incremental Transformer Structure Enhanced Image Inpainting with Masking
Positional Encoding [38.014569953980754]
提案モデルでは,低解像度のスケッチ空間において,強力なアテンションベーストランスフォーマーモデルを用いて全体像構造を復元する。
我々のモデルは、ゼロd残差加算により、他の事前学習した塗装モデルと効率的に統合することができる。
論文 参考訳(メタデータ) (2022-03-02T04:27:27Z) - A Wasserstein GAN for Joint Learning of Inpainting and its Spatial
Optimisation [3.4392739159262145]
空間的インペイントデータ最適化のための最初の生成逆ネットワークを提案する。
従来のアプローチとは対照的に、着色発電機とそれに対応するマスクネットワークのジョイントトレーニングが可能である。
これにより、従来のモデルよりも視覚的品質とスピードが大幅に向上し、現在の最適化ネットワークよりも優れています。
論文 参考訳(メタデータ) (2022-02-11T14:02:36Z) - RigNet: Repetitive Image Guided Network for Depth Completion [20.66405067066299]
近年のアプローチは、高密度な結果を予測するためのイメージガイド学習に重点を置いている。
ぼやけたイメージガイダンスとオブジェクト構造は、まだイメージガイドされたフレームワークのパフォーマンスを妨げている。
画像案内ネットワークにおける反復的な設計を探索し,徐々に深度値の回復を図る。
提案手法は,NYUv2データセットの最先端化を実現し,提出時のKITTIベンチマークで1位にランクインする。
論文 参考訳(メタデータ) (2021-07-29T08:00:33Z) - Deep Image Compositing [93.75358242750752]
ユーザ入力なしで高品質の画像合成を自動生成する手法を提案する。
ラプラシアン・ピラミッド・ブレンディングにインスパイアされ、フォアグラウンドや背景画像からの情報を効果的に融合させるために、密結合型多ストリーム融合ネットワークが提案されている。
実験により,提案手法は高品質な合成物を自動生成し,定性的かつ定量的に既存手法より優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-11-04T06:12:24Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
まず,学習した画像の圧縮方法に関する総合的な文献調査を行う。
本稿では,最先端の学習画像圧縮手法のマイルストーンについて述べるとともに,既存の幅広い作品について概観し,その歴史的開発ルートについて考察する。
エントロピー推定と信号再構成のための粗大な超高次モデルを導入することにより、速度歪み性能の向上を実現する。
論文 参考訳(メタデータ) (2020-02-10T13:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。