論文の概要: RFI Detection with Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2311.14303v2
- Date: Fri, 22 Mar 2024 10:54:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 22:30:18.446122
- Title: RFI Detection with Spiking Neural Networks
- Title(参考訳): スパイクニューラルネットワークを用いたRFI検出
- Authors: Nicholas J. Pritchard, Andreas Wicenec, Mohammed Bennamoun, Richard Dodson,
- Abstract要約: 本研究では、スパイキングニューラルネットワーク(SNN)の天文学的データ処理タスク、特にRFI検出への最初の探索的応用について紹介する。
ANN2SNN変換によりSNN実行に最寄りのラテンネーブラーアルゴリズムとオートエンコーダアーキテクチャを適用する。
我々のアプローチは、HERAデータセットのAUROC、AUPRC、F1の既存の手法と競合するが、LOFAR、Tabascalデータセットでは困難である。
- 参考スコア(独自算出の注目度): 25.08630315149258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting and mitigating Radio Frequency Interference (RFI) is critical for enabling and maximising the scientific output of radio telescopes. The emergence of machine learning methods has led to their application in radio astronomy, and in RFI detection. Spiking Neural Networks (SNNs), inspired by biological systems, are well-suited for processing spatio-temporal data. This study introduces the first exploratory application of SNNs to an astronomical data-processing task, specifically RFI detection. We adapt the nearest-latent-neighbours (NLN) algorithm and auto-encoder architecture proposed by previous authors to SNN execution by direct ANN2SNN conversion, enabling simplified downstream RFI detection by sampling the naturally varying latent space from the internal spiking neurons. Our subsequent evaluation aims to determine whether SNNs are viable for future RFI detection schemes. We evaluate detection performance with the simulated HERA telescope and hand-labelled LOFAR observation dataset the original authors provided. We additionally evaluate detection performance with a new MeerKAT-inspired simulation dataset that provides a technical challenge for machine-learnt RFI detection methods. This dataset focuses on satellite-based RFI, an increasingly important class of RFI and is an additional contribution. Our approach remains competitive with existing methods in AUROC, AUPRC and F1 scores for the HERA dataset but exhibits difficulty in the LOFAR and Tabascal datasets. Our method maintains this accuracy while completely removing the compute and memory-intense latent sampling step found in NLN. This work demonstrates the viability of SNNs as a promising avenue for machine-learning-based RFI detection in radio telescopes by establishing a minimal performance baseline on traditional and nascent satellite-based RFI sources and is the first work to our knowledge to apply SNNs in astronomy.
- Abstract(参考訳): RFI(Radio Frequency Interference)の検出と緩和は、電波望遠鏡の科学的出力を最大化するために重要である。
機械学習の手法の出現は、電波天文学やRFI検出への応用につながっている。
生体システムにインスパイアされたスパイキングニューラルネットワーク(SNN)は、時空間データの処理に適している。
本研究では、SNNの天文学的データ処理タスク、特にRFI検出への最初の探索的応用について紹介する。
我々は,従来の著者が提案したNLNアルゴリズムとオートエンコーダアーキテクチャを,ANN2SNN変換によるSNN実行に適用し,内部スパイキングニューロンから自然に変化する潜伏空間をサンプリングすることにより,下流RFI検出を簡略化する。
その後の評価は,将来のRFI検出方式でSNNが有効かどうかを判断することを目的としている。
本報告では, HERA 望遠鏡とハンドラベリングしたLOFAR観測データを用いて, 検出性能の評価を行った。
さらに,機械学習RFI検出手法の技術的課題である,MeerKATにインスパイアされた新しいシミュレーションデータセットによる検出性能の評価を行った。
このデータセットは、ますます重要なRFIのクラスである衛星ベースのRFIに焦点を当てており、追加の貢献である。
我々のアプローチは、HERAデータセットのAUROC、AUPRC、F1の既存の手法と競合するが、LOFAR、Tabascalデータセットでは困難である。
提案手法は,NLNで発見された計算およびメモリインテリジェントサンプリングステップを完全に除去しながら,この精度を維持している。
本研究は,SNNの電波望遠鏡における機械学習に基づくRFI検出のための有望な道として,従来の衛星ベースのRFIソース上での最小性能基準を確立することにより,SNNの生存可能性を示すものである。
関連論文リスト
- Towards xAI: Configuring RNN Weights using Domain Knowledge for MIMO Receive Processing [19.995241682744567]
我々は、無線通信の物理層における説明可能なAI(xAI)の分野を前進させる。
私たちはその仕事に集中する。
MIMO-OFDMは、リザーブコンピューティング(RC)フレームワークを使用した処理(シンボル検出など)を受信する。
リカレントニューラルネットワーク(RNN)の中で
本稿では,信号処理をベースとした第1原理によるRCの動作の理解について述べる。
論文 参考訳(メタデータ) (2024-10-09T17:16:11Z) - Supervised Radio Frequency Interference Detection with SNNs [25.08630315149258]
電波干渉(Radio Frequency Interference、RFI)は、電波望遠鏡によって観測される観測を妨害し、地球や天体から発生する電波天文学において重要な課題である。
電波天文学観測の動的・時間的性質を考えると、スパイキングニューラルネットワーク(SNN)は有望なアプローチとして出現する。
SNN推論のための電波可視データの符号化について,レート,レイテンシ,デルタ変調,ステップフォワードアルゴリズムの3つのバリエーションを考慮した6つの符号化方式について検討した。
論文 参考訳(メタデータ) (2024-06-10T07:49:51Z) - Fusing Event-based Camera and Radar for SLAM Using Spiking Neural
Networks with Continual STDP Learning [7.667590910539249]
本研究では、イベントベースのカメラと、ドローンナビゲーションのための周波数変調連続波(FMCW)レーダを融合した、第一種SLAMアーキテクチャを提案する。
各センサーはバイオインスパイアされたスパイキングニューラルネットワーク(SNN)によって処理され、連続的なスパイク・タイミング・依存塑性(STDP)学習を行う。
DVS-Radar SLAM手法のロバスト性を実証した。
論文 参考訳(メタデータ) (2022-10-09T12:05:19Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - A SAR speckle filter based on Residual Convolutional Neural Networks [68.8204255655161]
本研究では,Convolutional Neural Networks(CNN)に基づく深層学習(DL)アルゴリズムを用いて,Sentinel-1データからスペックルノイズをフィルタリングする新しい手法を提案する。
得られた結果は、技術の現状と比較すると、ピーク信号対雑音比(PSNR)と構造類似度指数(SSIM)の点で明確な改善を示しています。
論文 参考訳(メタデータ) (2021-04-19T14:43:07Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Wireless Localisation in WiFi using Novel Deep Architectures [4.541069830146568]
本稿では,コモディティ・チップセットと標準チャネル・サウンドによるWiFi機器の屋内位置推定について検討する。
本稿では、異なるアンテナで受信されたWiFiサブキャリアに対応するチャネル状態情報から特徴を抽出する、新しい浅層ニューラルネットワーク(SNN)を提案する。
論文 参考訳(メタデータ) (2020-10-16T22:48:29Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
雑音の多い実環境下での正確な音像定位のための純粋スパイクニューラルネットワーク(SNN)に基づく計算モデルを提案する。
このアルゴリズムを,マイクロホンアレイを用いたリアルタイムロボットシステムに実装する。
実験の結果, 平均誤差方位は13度であり, 音源定位に対する他の生物学的に妥当なニューロモルフィックアプローチの精度を上回っていることがわかった。
論文 参考訳(メタデータ) (2020-07-07T08:22:56Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
スパイキングニューラルネットワーク(SNN)を用いた生時間パルスで直接物体認識問題に対処する手法を提案する。
各種データセットを用いて評価した結果,提案手法は最先端の手法に匹敵する性能を示しながら,優れた時間効率を実現している。
論文 参考訳(メタデータ) (2020-01-24T22:58:55Z) - Volterra Neural Networks (VNNs) [24.12314339259243]
本稿では,畳み込みニューラルネットワークの複雑性を低減するために,Volterraフィルタにインスパイアされたネットワークアーキテクチャを提案する。
本稿では,Volterra Neural Network(VNN)の並列実装とその性能について述べる。
提案手法は,動作認識のためのUCF-101およびHMDB-51データセットを用いて評価し,CNN手法よりも優れていた。
論文 参考訳(メタデータ) (2019-10-21T19:22:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。