Distance-Only Task Orchestration Algorithm for Energy Efficiency in Satellite-Based Mist Computing
- URL: http://arxiv.org/abs/2311.14308v1
- Date: Fri, 24 Nov 2023 06:38:41 GMT
- Title: Distance-Only Task Orchestration Algorithm for Energy Efficiency in Satellite-Based Mist Computing
- Authors: Messaoud Babaghayou, Noureddine Chaib, Leandros Maglaras, Yagmur Yigit, Mohamed Amine Ferrag,
- Abstract summary: We propose a heavy computing task offloading algorithm that prioritizes satellite proximity.
Our proposed algorithm outperforms other offloading schemes in terms of satellites energy consumption, average end-to-end delay, and tasks success rates.
- Score: 1.0225653612678713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the challenge of efficiently offloading heavy computing tasks from ground mobile devices to the satellite-based mist computing environment. With ground-based edge and cloud servers often being inaccessible, the exploitation of satellite mist computing becomes imperative. Existing offloading algorithms have shown limitations in adapting to the unique characteristics of heavy computing tasks. Thus, we propose a heavy computing task offloading algorithm that prioritizes satellite proximity. This approach not only reduces energy consumption during telecommunications but also ensures tasks are executed within the specified timing constraints, which are typically non-time-critical. Our proposed algorithm outperforms other offloading schemes in terms of satellites energy consumption, average end-to-end delay, and tasks success rates. Although it exhibits a higher average VM CPU usage, this increase does not pose critical challenges. This distance-based approach offers a promising solution to enhance energy efficiency in satellite-based mist computing, making it well-suited for heavy computing tasks demands.
Related papers
- A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
The low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system.
We propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks.
arXiv Detail & Related papers (2024-08-29T06:57:45Z) - Security-Sensitive Task Offloading in Integrated Satellite-Terrestrial Networks [15.916368067018169]
We propose the deployment of LEO satellite edge in an integrated satellite-terrestrial networks (ISTN) structure to support textitsecurity-sensitive computing task offloading.
We model the task allocation and offloading order problem as a joint optimization problem to minimize task offloading delay, energy consumption, and the number of attacks while satisfying reliability constraints.
arXiv Detail & Related papers (2024-01-20T07:29:55Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - Quantum algorithms applied to satellite mission planning for Earth
observation [0.0]
This paper introduces a set of quantum algorithms to solve the satellite mission planning problem.
The problem is formulated as maximizing the number of high-priority tasks completed on real datasets.
A hybridized quantum-enhanced reinforcement learning agent can achieve a completion percentage of 98.5% over high-priority tasks.
arXiv Detail & Related papers (2023-02-14T16:49:25Z) - Computation Offloading and Resource Allocation in F-RANs: A Federated
Deep Reinforcement Learning Approach [67.06539298956854]
fog radio access network (F-RAN) is a promising technology in which the user mobile devices (MDs) can offload computation tasks to the nearby fog access points (F-APs)
arXiv Detail & Related papers (2022-06-13T02:19:20Z) - Innovations in the field of on-board scheduling technologies [64.41511459132334]
This paper proposes an onboard scheduler, that integrates inside an onboard software framework for mission autonomy.
The scheduler is based on linear integer programming and relies on the use of a branch-and-cut solver.
The technology has been tested on an Earth Observation scenario, comparing its performance against the state-of-the-art scheduling technology.
arXiv Detail & Related papers (2022-05-04T12:00:49Z) - Energy Efficient Edge Computing: When Lyapunov Meets Distributed
Reinforcement Learning [12.845204986571053]
In this work, we study the problem of energy-efficient offloading enabled by edge computing.
In the considered scenario, multiple users simultaneously compete for radio and edge computing resources.
The proposed solution also allows to increase the network's energy efficiency compared to a benchmark approach.
arXiv Detail & Related papers (2021-03-31T11:02:29Z) - Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in
Space-Air-Ground Integrated Network [24.022108191145527]
We investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT) services.
In the considered scenario, an unmanned aerial vehicle (UAV) collects computing tasks from IoT devices and then makes online offloading decisions.
Our objective is to design a task scheduling policy that minimizes offloading and computing delay of all tasks given the UAV energy capacity constraint.
arXiv Detail & Related papers (2020-10-04T02:58:03Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
A joint task, spectrum, and transmit power allocation problem is investigated for a wireless network.
The proposed algorithm can reduce the number of iterations needed for convergence and the maximal delay among all users by up to 18% and 11.1% compared to the standard Q-learning algorithm.
arXiv Detail & Related papers (2020-07-20T13:46:42Z) - Federated Learning for Task and Resource Allocation in Wireless High
Altitude Balloon Networks [160.96150373385768]
The problem of minimizing energy and time consumption for task computation and transmission is studied in a mobile edge computing (MEC)-enabled balloon network.
A support vector machine (SVM)-based federated learning (FL) algorithm is proposed to determine the user association proactively.
The proposed SVM-based FL method enables each HAB to cooperatively build an SVM model that can determine all user associations.
arXiv Detail & Related papers (2020-03-19T14:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.