C-ITS Environment Modeling and Attack Modeling
- URL: http://arxiv.org/abs/2311.14327v2
- Date: Mon, 27 Nov 2023 08:11:02 GMT
- Title: C-ITS Environment Modeling and Attack Modeling
- Authors: Jaewoong Choi, Min Geun Song, Hyosun Lee, Chaeyeon Sagong, Sangbeom Park, Jaesung Lee, Jeong Do Yoo, Huy Kang Kim,
- Abstract summary: Cooperative-Intelligent Transport Systems (C-ITS) is a system where vehicles provide real-time information to drivers.
As smart cities integrate many elements through networks and electronic control, they are susceptible to cybersecurity issues.
This technical document aims to model the C-ITS environment and the services it provides, with the purpose of identifying the attack surface.
- Score: 7.282532608209566
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As technology advances, cities are evolving into smart cities, with the ability to process large amounts of data and the increasing complexity and diversification of various elements within urban areas. Among the core systems of a smart city is the Cooperative-Intelligent Transport Systems (C-ITS). C-ITS is a system where vehicles provide real-time information to drivers about surrounding traffic conditions, sudden stops, falling objects, and other accident risks through roadside base stations. It consists of road infrastructure, C-ITS centers, and vehicle terminals. However, as smart cities integrate many elements through networks and electronic control, they are susceptible to cybersecurity issues. In the case of cybersecurity problems in C-ITS, there is a significant risk of safety issues arising. This technical document aims to model the C-ITS environment and the services it provides, with the purpose of identifying the attack surface where security incidents could occur in a smart city environment. Subsequently, based on the identified attack surface, the document aims to construct attack scenarios and their respective stages. The document provides a description of the concept of C-ITS, followed by the description of the C-ITS environment model, service model, and attack scenario model defined by us.
Related papers
- MetaUrban: An Embodied AI Simulation Platform for Urban Micromobility [52.0930915607703]
Recent advances in Robotics and Embodied AI make public urban spaces no longer exclusive to humans.
Micromobility enabled by AI for short-distance travel in public urban spaces plays a crucial component in the future transportation system.
We present MetaUrban, a compositional simulation platform for the AI-driven urban micromobility research.
arXiv Detail & Related papers (2024-07-11T17:56:49Z) - Cybersecurity in Critical Infrastructures: A Post-Quantum Cryptography Perspective [0.0]
Implementing cryptosystems in industrial communication networks faces a trade-off between the security of the communications and the amortization of the industrial infrastructure.
New threat to cybersecurity has arisen with the theoretical proposal of quantum computers.
Many global agents have become aware that transitioning their secure communications to a quantum secure paradigm is a priority that should be established before the arrival of fault-tolerance.
arXiv Detail & Related papers (2024-01-08T10:02:48Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Survey on Security Attacks in Connected and Autonomous Vehicular Systems [0.0]
This study provides a brief review of the state of cyber security in the CAVs environment.
It categorizes the multiple cybersecurity threats and weaknesses in the context of CAVs into three groups: attacks on the vehicles network, attacks on the Internet at large, and other attacks.
It details the most uptodate defense tactics for securing CAVs and analyzes how effective they are.
arXiv Detail & Related papers (2023-10-14T06:37:05Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - Smart City Intersections: Intelligence Nodes for Future Metropolises [8.690266225071772]
Traffic intersections are the most suitable locations for the deployment of computing, communications, and intelligence services for smart cities of the future.
This paper focuses on high-bandwidth, low-latency applications, and in that context it describes: (i) system design considerations for smart city intersection intelligence nodes; (ii) key technological components including sensors, networking, edge computing, low latency design, and AI-based intelligence; and (iii) applications such as privacy preservation, cloud-connected vehicles, a real-time "radar-screen", traffic management, and monitoring of pedestrian behavior during pandemics.
arXiv Detail & Related papers (2022-05-03T17:22:57Z) - Simulating Malicious Attacks on VANETs for Connected and Autonomous
Vehicle Cybersecurity: A Machine Learning Dataset [0.4129225533930965]
Connected and Autonomous Vehicles (CAVs) rely on Vehicular Adhoc Networks with wireless communication between vehicles and roadside infrastructure to support safe operation.
cybersecurity attacks pose a threat to VANETs and the safe operation of CAVs.
This study proposes the use of simulation for modelling typical communication scenarios which may be subject to malicious attacks.
arXiv Detail & Related papers (2022-02-15T20:08:58Z) - Multi-Layered Diagnostics for Smart Cities [1.0828616610785522]
Smart cities use technology to improve traffic patterns, energy distribution, air quality and more.
The elements of a smart city can increase the convenience for its citizens, by integrating IT technology into many aspects of citizen interaction.
Actual deployment cases exist in U.S., Europe, Singapore, and South Korea.
arXiv Detail & Related papers (2021-07-20T06:58:11Z) - AI in Smart Cities: Challenges and approaches to enable road vehicle
automation and smart traffic control [56.73750387509709]
SCC ideates on a data-centered society aiming at improving efficiency by automating and optimizing activities and utilities.
This paper describes AI perspectives in SCC and gives an overview of AI-based technologies used in traffic to enable road vehicle automation and smart traffic control.
arXiv Detail & Related papers (2021-04-07T14:31:08Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKG is a system for automated OSCTI gathering and management.
It uses a combination of AI and NLP techniques to extract high-fidelity knowledge about threat behaviors.
arXiv Detail & Related papers (2021-01-19T18:31:35Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
Reinforcement learning (RL) in real-world safety-critical target settings like urban driving is hazardous.
We propose a "safety-critical adaptation" task setting: an agent first trains in non-safety-critical "source" environments.
We propose a solution approach, CARL, that builds on the intuition that prior experience in diverse environments equips an agent to estimate risk.
arXiv Detail & Related papers (2020-08-15T01:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.