Survey on Security Attacks in Connected and Autonomous Vehicular Systems
- URL: http://arxiv.org/abs/2310.09510v1
- Date: Sat, 14 Oct 2023 06:37:05 GMT
- Title: Survey on Security Attacks in Connected and Autonomous Vehicular Systems
- Authors: S M Mostaq Hossain, Shampa Banik, Trapa Banik, Ashfak Md Shibli,
- Abstract summary: This study provides a brief review of the state of cyber security in the CAVs environment.
It categorizes the multiple cybersecurity threats and weaknesses in the context of CAVs into three groups: attacks on the vehicles network, attacks on the Internet at large, and other attacks.
It details the most uptodate defense tactics for securing CAVs and analyzes how effective they are.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Connected and autonomous vehicles, also known as CAVs, are a general trend in the evolution of the automotive industry that can be utilized to make transportation safer, improve the number of mobility options available, user costs will go down and new jobs will be created. However, as our society grows more automated and networked, criminal actors will have additional opportunities to conduct a variety of attacks, putting CAV security in danger. By providing a brief review of the state of cyber security in the CAVs environment, this study aims to draw attention to the issues and concerns associated with security. The first thing it does is categorize the multiple cybersecurity threats and weaknesses in the context of CAVs into three groups: attacks on the vehicles network, attacks on the Internet at large, and other attacks. This is done in accordance with the various communication networks and targets under attack. Next, it considers the possibility of cyber attacks to be an additional form of threat posed by the environment of CAVs. After that, it details the most uptodate defense tactics for securing CAVs and analyzes how effective they are. In addition, it draws some conclusions about the various cyber security and safety requirements of CAVs that are now available, which is beneficial for the use of CAVs in the real world. At the end, we discussed some implications on Adversary Attacks on Autonomous Vehicles. In conclusion, a number of difficulties and unsolved issues for future research are analyzed and explored.
Related papers
- Navigating Connected Car Cybersecurity: Location Anomaly Detection with RAN Data [2.147995542780459]
Cyber-attacks, including hijacking and spoofing, pose significant threats to connected cars.
This paper presents a novel approach for identifying potential attacks through Radio Access Network (RAN) event monitoring.
The major contribution of this paper is a location anomaly detection module that identifies devices that appear in multiple locations simultaneously.
arXiv Detail & Related papers (2024-07-02T22:42:45Z) - Navigating the road to automotive cybersecurity compliance [39.79758414095764]
The automotive industry is compelled to adopt robust cybersecurity measures to safeguard both vehicles and data against potential threats.
The future of automotive cybersecurity lies in the continuous development of advanced protective measures and collaborative efforts among all stakeholders.
arXiv Detail & Related papers (2024-06-29T16:07:48Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks [55.340315838742015]
Negligence on the security of infotainment data communication in IoV networks can unintentionally open an easy access point for social engineering attacks.
In particular, we first classify data communication in the IoV network, examine the security focus of each data communication, and then develop a differentiated security architecture to provide security protection on a file-to-file basis.
arXiv Detail & Related papers (2024-03-29T12:01:31Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - LCCDE: A Decision-Based Ensemble Framework for Intrusion Detection in
The Internet of Vehicles [7.795462813462946]
Intrusion Detection Systems (IDSs) that can identify malicious cyber-attacks have been developed.
We propose a novel ensemble IDS framework named Leader Class and Confidence Decision Ensemble (LCCDE)
LCCDE is constructed by determining the best-performing ML model among three advanced algorithms.
arXiv Detail & Related papers (2022-08-05T22:30:34Z) - Simulating Malicious Attacks on VANETs for Connected and Autonomous
Vehicle Cybersecurity: A Machine Learning Dataset [0.4129225533930965]
Connected and Autonomous Vehicles (CAVs) rely on Vehicular Adhoc Networks with wireless communication between vehicles and roadside infrastructure to support safe operation.
cybersecurity attacks pose a threat to VANETs and the safe operation of CAVs.
This study proposes the use of simulation for modelling typical communication scenarios which may be subject to malicious attacks.
arXiv Detail & Related papers (2022-02-15T20:08:58Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Smart and Secure CAV Networks Empowered by AI-Enabled Blockchain: Next
Frontier for Intelligent Safe-Driving Assessment [17.926728975133113]
Securing a safe-driving circumstance for connected and autonomous vehicles (CAVs) continues to be a widespread concern.
We propose a novel framework of algorithm-enabled intElligent Safe-driving assessmenT (BEST) to offer a smart and reliable approach.
arXiv Detail & Related papers (2021-04-09T19:08:34Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.