Resource-efficient shadow tomography using equatorial stabilizer measurements
- URL: http://arxiv.org/abs/2311.14622v3
- Date: Sat, 8 Jun 2024 03:54:10 GMT
- Title: Resource-efficient shadow tomography using equatorial stabilizer measurements
- Authors: Guedong Park, Yong Siah Teo, Hyunseok Jeong,
- Abstract summary: equatorial-stabilizer-based shadow-tomography schemes can estimate $M$ observables using $mathcalO(log(M),mathrmpoly(n),1/varepsilon2)$ sampling copies.
We numerically confirm our theoretically-derived shadow-tomographic sampling complexities with random pure states and multiqubit graph states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a resource-efficient shadow-tomography scheme using equatorial-stabilizer measurements generated from subsets of Clifford unitaries. For $n$-qubit systems, equatorial-stabilizer-based shadow-tomography schemes can estimate $M$ observables (up to an additive error $\varepsilon$) using $\mathcal{O}(\log(M),\mathrm{poly}(n),1/\varepsilon^2)$ sampling copies for a large class of observables, including those with traceless parts possessing polynomially-bounded Frobenius norms. For arbitrary quantum-state observables, sampling complexity becomes $n$-independent. Our scheme only requires an $n$-depth controlled-$Z$ (CZ) circuit [$\mathcal{O}(n^2)$ CZ gates] and Pauli measurements per sampling copy, exhibiting a smaller maximal gate count relative to previously-known randomized-Clifford-based proposals. Implementation-wise, the maximal circuit depth is reduced to $\frac{n}{2}+\mathcal{O}(\log(n))$ with controlled-NOT (CNOT) gates. Alternatively, our scheme is realizable with $2n$-depth circuits comprising $O(n^2)$ nearest-neighboring CNOT gates, with possible further gate-count improvements. We numerically confirm our theoretically-derived shadow-tomographic sampling complexities with random pure states and multiqubit graph states. Finally, we demonstrate that equatorial-stabilizer-based shadow tomography is more noise-tolerant than randomized-Clifford-based schemes in terms of average gate fidelity and fidelity estimation for Greenberger--Horne--Zeilinger (GHZ) state and W state.
Related papers
- Optimal high-precision shadow estimation [22.01044188849049]
Formally we give a protocol that measures $O(log(m)/epsilon2)$ copies of an unknown mixed state $rhoinmathbbCdtimes d$.
We show via dimensionality reduction that we can rescale $epsilon$ and $d$ to reduce to the regime where $epsilon le O(d-1/2)$.
arXiv Detail & Related papers (2024-07-18T19:42:49Z) - Approximate inverse measurement channel for shallow shadows [0.025206105035672277]
Classical shadows are a versatile tool to probe many-body quantum systems.
We put forward a simple approximate post-processing scheme where the infinite-depth inverse channel is applied to the finite-depth classical shadows.
Our work extends the applicability of shallow shadows to large system sizes and general circuit connectivity.
arXiv Detail & Related papers (2024-07-16T15:02:25Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - The Cost of Entanglement Renormalization on a Fault-Tolerant Quantum Computer [0.042855555838080824]
We perform a detailed estimate for the prospect of using deep entanglement renormalization ansatz on a fault-tolerant quantum computer.
For probing a relatively large system size, we observe up to an order of magnitude reduction in the number of qubits.
For estimating the energy per site of $epsilon$, $mathcalOleft(fraclog Nepsilon right)$ $T$ gates and $mathcalOleft(log Nright)$ qubits suffice.
arXiv Detail & Related papers (2024-04-15T18:00:17Z) - Detection-Recovery Gap for Planted Dense Cycles [72.4451045270967]
We consider a model where a dense cycle with expected bandwidth $n tau$ and edge density $p$ is planted in an ErdHos-R'enyi graph $G(n,q)$.
We characterize the computational thresholds for the associated detection and recovery problems for the class of low-degree algorithms.
arXiv Detail & Related papers (2023-02-13T22:51:07Z) - Near-optimal fitting of ellipsoids to random points [68.12685213894112]
A basic problem of fitting an ellipsoid to random points has connections to low-rank matrix decompositions, independent component analysis, and principal component analysis.
We resolve this conjecture up to logarithmic factors by constructing a fitting ellipsoid for some $n = Omega(, d2/mathrmpolylog(d),)$.
Our proof demonstrates feasibility of the least squares construction of Saunderson et al. using a convenient decomposition of a certain non-standard random matrix.
arXiv Detail & Related papers (2022-08-19T18:00:34Z) - Fermionic tomography and learning [0.5482532589225553]
Shadow tomography via classical shadows is a state-of-the-art approach for estimating properties of a quantum state.
We show how this approach leads to efficient estimation protocols for the fidelity with a pure fermionic Gaussian state.
We use these tools to show that an $n$-electron, $m$-mode Slater can be learned to within $epsilon$ fidelity given $O(n2 m7 log(m / delta) / epsilon2)$ samples of the determinant.
arXiv Detail & Related papers (2022-07-29T17:12:53Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - Fermionic partial tomography via classical shadows [0.0]
We propose a tomographic protocol for estimating any $ k $-body reduced density matrix ($ k $-RDM) of an $ n $-mode fermionic state.
Our approach extends the framework of classical shadows, a randomized approach to learning a collection of quantum-state properties, to the fermionic setting.
arXiv Detail & Related papers (2020-10-30T06:28:26Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.