VSViG: Real-time Video-based Seizure Detection via Skeleton-based Spatiotemporal ViG
- URL: http://arxiv.org/abs/2311.14775v2
- Date: Mon, 8 Jul 2024 16:59:16 GMT
- Title: VSViG: Real-time Video-based Seizure Detection via Skeleton-based Spatiotemporal ViG
- Authors: Yankun Xu, Junzhe Wang, Yun-Hsuan Chen, Jie Yang, Wenjie Ming, Shuang Wang, Mohamad Sawan,
- Abstract summary: An accurate and efficient epileptic seizure onset detection can significantly benefit patients.
Traditional diagnostic methods, primarily relying on electroencephalograms (EEGs), often result in cumbersome and non-portable solutions.
We propose a novel Video-based Seizure detection model via a skeleton-basedtemporal Vision Graph neural network.
- Score: 8.100646331930953
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An accurate and efficient epileptic seizure onset detection can significantly benefit patients. Traditional diagnostic methods, primarily relying on electroencephalograms (EEGs), often result in cumbersome and non-portable solutions, making continuous patient monitoring challenging. The video-based seizure detection system is expected to free patients from the constraints of scalp or implanted EEG devices and enable remote monitoring in residential settings. Previous video-based methods neither enable all-day monitoring nor provide short detection latency due to insufficient resources and ineffective patient action recognition techniques. Additionally, skeleton-based action recognition approaches remain limitations in identifying subtle seizure-related actions. To address these challenges, we propose a novel Video-based Seizure detection model via a skeleton-based spatiotemporal Vision Graph neural network (VSViG) for its efficient, accurate and timely purpose in real-time scenarios. Our experimental results indicate VSViG outperforms previous state-of-the-art action recognition models on our collected patients' video data with higher accuracy (5.9% error), lower FLOPs (0.4G), and smaller model size (1.4M). Furthermore, by integrating a decision-making rule that combines output probabilities and an accumulative function, we achieve a 5.1 s detection latency after EEG onset, a 13.1 s detection advance before clinical onset, and a zero false detection rate. The project homepage is available at: https://github.com/xuyankun/VSViG/
Related papers
- REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Dynamic Erasing Network Based on Multi-Scale Temporal Features for
Weakly Supervised Video Anomaly Detection [103.92970668001277]
We propose a Dynamic Erasing Network (DE-Net) for weakly supervised video anomaly detection.
We first propose a multi-scale temporal modeling module, capable of extracting features from segments of varying lengths.
Then, we design a dynamic erasing strategy, which dynamically assesses the completeness of the detected anomalies.
arXiv Detail & Related papers (2023-12-04T09:40:11Z) - Privacy-preserving Early Detection of Epileptic Seizures in Videos [10.180183020927872]
We contribute towards the development of video-based epileptic seizure classification by introducing a novel framework (SETR-PKD)
Our framework is built upon optical flow features extracted from the video of a seizure, which encodes the seizure motion semiotics while preserving the privacy of the patient.
Our framework could detect tonic-clonic seizures (TCSs) in a privacy-preserving manner with an accuracy of 83.9% while they are only half-way into their progression.
arXiv Detail & Related papers (2023-09-15T22:29:07Z) - Video object detection for privacy-preserving patient monitoring in
intensive care [0.0]
We propose a new method for exploiting information in the temporal succession of video frames.
Our method outperforms a standard YOLOv5 baseline model by +1.7% mAP@.5 while also training over ten times faster on our proprietary dataset.
arXiv Detail & Related papers (2023-06-26T11:52:22Z) - Machine Learning Based IoT Adaptive Architecture for Epilepsy Seizure
Detection: Anatomy and Analysis [0.0]
A seizure tracking system is crucial for monitoring and evaluating epilepsy treatments.
Caretaker seizure diaries are used in epilepsy care today, but clinical seizure monitoring may miss seizures.
We propose a versal, affordable noninvasive based on a simple real-time k-Nearest-Neighbors (kNN) machine learning that can be customized and adapted to individual users in less than four seconds of training time.
arXiv Detail & Related papers (2023-05-30T18:15:05Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - Real-Time Seizure Detection using EEG: A Comprehensive Comparison of
Recent Approaches under a Realistic Setting [7.545072251531297]
This work extensively compares state-of-the-art models and signal feature extractors in a real-time seizure detection framework suitable for real-world application.
Our code is available at https://github.com/AITRICS/EEG_real_time_seizure_detection.
arXiv Detail & Related papers (2022-01-21T16:53:32Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - An End-to-End Deep Learning Approach for Epileptic Seizure Prediction [4.094649684498489]
We propose an end-to-end deep learning solution using a convolutional neural network (CNN)
Overall sensitivity, false prediction rate, and area under receiver operating characteristic curve reaches 93.5%, 0.063/h, 0.981 and 98.8%, 0.074/h, 0.988 on two datasets respectively.
arXiv Detail & Related papers (2021-08-17T05:49:43Z) - High Frequency EEG Artifact Detection with Uncertainty via Early Exit
Paradigm [70.50499513259322]
Current artifact detection pipelines are resource-hungry and rely heavily on hand-crafted features.
We propose E4G, a deep learning framework for high frequency EEG artifact detection.
Our framework exploits the early exit paradigm, building an implicit ensemble of models capable of capturing uncertainty.
arXiv Detail & Related papers (2021-07-21T07:05:42Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.