An End-to-End Deep Learning Approach for Epileptic Seizure Prediction
- URL: http://arxiv.org/abs/2108.07453v1
- Date: Tue, 17 Aug 2021 05:49:43 GMT
- Title: An End-to-End Deep Learning Approach for Epileptic Seizure Prediction
- Authors: Yankun Xu, Jie Yang, Shiqi Zhao, Hemmings Wu, and Mohamad Sawan
- Abstract summary: We propose an end-to-end deep learning solution using a convolutional neural network (CNN)
Overall sensitivity, false prediction rate, and area under receiver operating characteristic curve reaches 93.5%, 0.063/h, 0.981 and 98.8%, 0.074/h, 0.988 on two datasets respectively.
- Score: 4.094649684498489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An accurate seizure prediction system enables early warnings before seizure
onset of epileptic patients. It is extremely important for drug-refractory
patients. Conventional seizure prediction works usually rely on features
extracted from Electroencephalography (EEG) recordings and classification
algorithms such as regression or support vector machine (SVM) to locate the
short time before seizure onset. However, such methods cannot achieve
high-accuracy prediction due to information loss of the hand-crafted features
and the limited classification ability of regression and SVM algorithms. We
propose an end-to-end deep learning solution using a convolutional neural
network (CNN) in this paper. One and two dimensional kernels are adopted in the
early- and late-stage convolution and max-pooling layers, respectively. The
proposed CNN model is evaluated on Kaggle intracranial and CHB-MIT scalp EEG
datasets. Overall sensitivity, false prediction rate, and area under receiver
operating characteristic curve reaches 93.5%, 0.063/h, 0.981 and 98.8%,
0.074/h, 0.988 on two datasets respectively. Comparison with state-of-the-art
works indicates that the proposed model achieves exceeding prediction
performance.
Related papers
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Epilepsy Seizure Detection and Prediction using an Approximate Spiking
Convolutional Transformer [12.151626573534001]
This paper presents a neuromorphic Spiking Convolutional Transformer, named Spiking Conformer, to detect and predict epileptic seizure segments.
We report evaluation results from the Spiking Conformer model using the Boston Children's Hospital-MIT (CHB-MIT) EEG dataset.
Using raw EEG data as input, the proposed Spiking Conformer achieved an average sensitivity rate of 94.9% and a specificity rate of 99.3% for the seizure detection task.
arXiv Detail & Related papers (2024-01-21T19:23:56Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - Binary Single-dimensional Convolutional Neural Network for Seizure
Prediction [4.42106872060105]
We propose a hardware-friendly network called Binary Single-dimensional Convolutional Neural Network (BSDCNN) for epileptic seizure prediction.
BSDCNN utilizes 1D convolutional kernels to improve prediction performance.
Overall area under curve, sensitivity, and false prediction rate reaches 0.915, 89.26%, 0.117/h and 0.970, 94.69%, 0.095/h on American Epilepsy Society Seizure Prediction Challenge dataset and the CHB-MIT one respectively.
arXiv Detail & Related papers (2022-06-08T09:27:37Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Transfer Learning of Deep Spatiotemporal Networks to Model Arbitrarily
Long Videos of Seizures [58.720142291102135]
Detailed analysis of seizure semiology is critical for management of epilepsy patients.
We present GESTURES, a novel architecture combining convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
We show that an STCNN trained on a HAR dataset can be used in combination with an RNN to accurately represent arbitrarily long videos of seizures.
arXiv Detail & Related papers (2021-06-22T18:40:31Z) - A Novel Multi-scale Dilated 3D CNN for Epileptic Seizure Prediction [6.688907774518885]
A novel convolutional neural network (CNN) is proposed to analyze time, frequency, and channel information of electroencephalography (EEG) signals.
The model uses three-dimensional (3D) kernels to facilitate the feature extraction over the three dimensions.
The proposed CNN model is evaluated with the CHB-MIT EEG database, the experimental results indicate that our model outperforms the existing state-of-the-art.
arXiv Detail & Related papers (2021-05-05T07:13:53Z) - A Generative Model to Synthesize EEG Data for Epileptic Seizure
Prediction [3.8271082752302137]
This paper proposes a deep convolutional generative adversarial network to generate synthetic EEG samples.
We use two methods to validate synthesized data namely, one-class SVM and a new proposal which we refer to as convolutional epileptic seizure predictor (CESP)
Our results show that CESP model achieves sensitivity of 78.11% and 88.21%, and FPR of 0.27/h and 0.14/h for training on synthesized data.
arXiv Detail & Related papers (2020-12-01T12:00:36Z) - Patient-Specific Seizure Prediction Using Single Seizure
Electroencephalography Recording [16.395309518579914]
We propose a Siamese neural network based seizure prediction method that takes a wavelet transformed EEG tensor as an input with convolutional neural network (CNN) as the base network for detecting change-points in EEG.
Our method only needs one seizure for training which translates to less than ten minutes of preictal and interictal data while still getting comparable results to models which utilize multiple seizures for seizure prediction.
arXiv Detail & Related papers (2020-11-14T03:45:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.