論文の概要: Understanding the Role of Textual Prompts in LLM for Time Series Forecasting: an Adapter View
- arxiv url: http://arxiv.org/abs/2311.14782v2
- Date: Mon, 18 Nov 2024 05:27:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:28:41.523386
- Title: Understanding the Role of Textual Prompts in LLM for Time Series Forecasting: an Adapter View
- Title(参考訳): 時系列予測におけるLLMにおけるテキストプロンプトの役割の理解:適応的視点
- Authors: Peisong Niu, Tian Zhou, Xue Wang, Liang Sun, Rong Jin,
- Abstract要約: 大規模言語モデル(LLM)の急成長する領域では、時系列予測にLLMを適用することへの関心が高まっている。
本研究の目的は,LLMへのテキストプロンプトの統合が時系列の予測精度を効果的に向上させる方法と理由を理解することである。
- 参考スコア(独自算出の注目度): 21.710722062737577
- License:
- Abstract: In the burgeoning domain of Large Language Models (LLMs), there is a growing interest in applying LLM to time series forecasting, with multiple studies focused on leveraging textual prompts to further enhance the predictive prowess. This study aims to understand how and why the integration of textual prompts into LLM can effectively improve the prediction accuracy of time series, which is not obvious at the glance, given the significant domain gap between texts and time series. Our extensive examination leads us to believe that (a) adding text prompts is roughly equivalent to introducing additional adapters, and (b) It is the introduction of learnable parameters rather than textual information that aligns the LLM with the time series forecasting task, ultimately enhancing prediction accuracy. Inspired by this discovery, we developed four adapters that explicitly address the gap between LLM and time series, and further improve the prediction accuracy. Overall,our work highlights how textual prompts enhance LLM accuracy in time series forecasting and suggests new avenues for continually improving LLM-based time series analysis.
- Abstract(参考訳): LLM(Large Language Models)の急成長する領域では、LLMを時系列予測に適用することへの関心が高まっており、テキストのプロンプトを活用して予測能力をさらに強化することに注力する研究がいくつかある。
本研究の目的は,テキストと時系列の間に大きな領域差があることを考えると,LLMへのテキストプロンプトの統合が時系列の予測精度を効果的に向上させる方法と理由を理解することである。
広範囲の検査の結果、私たちはそれを信じるようになった。
(a)テキストプロンプトの追加は、アダプタの追加とほぼ同等であり、
b) LLMを時系列予測タスクと整合させるテキスト情報ではなく,学習可能なパラメータを導入し,最終的に予測精度を向上する。
この発見に触発されて、LLMと時系列のギャップを明示的に解消し、予測精度をさらに向上する4つのアダプタを開発した。
全体として、我々の研究は、テキストプロンプトが時系列予測におけるLLMの精度を高める方法を強調し、LLMに基づく時系列分析を継続的に改善するための新しい方法を提案する。
関連論文リスト
- TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAPは、時系列データのコンテキスト化ツールとしてLarge Language Models(LLM)を創造的に利用する時系列処理フレームワークである。
TimeCAPには2つの独立したLCMエージェントが組み込まれており、1つは時系列のコンテキストをキャプチャするテキスト要約を生成し、もう1つはより情報のある予測を行うためにこのリッチな要約を使用する。
実世界のデータセットによる実験結果から,TimeCAPは時系列イベント予測の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2025-02-17T04:17:27Z) - Context information can be more important than reasoning for time series forecasting with a large language model [0.0]
時系列予測のための大規模言語モデル(LLM)の特性について検討する。
発見は、単一のプロンプト法が普遍的に適用できないことを示している。
LLMは、しばしばプロンプトによって記述された手順に従わない。
論文 参考訳(メタデータ) (2025-02-08T21:39:07Z) - Time-VLM: Exploring Multimodal Vision-Language Models for Augmented Time Series Forecasting [26.4608782425897]
Time-VLMは、時間的、視覚的、テキスト的なモダリティを橋渡しして予測を強化する新しいフレームワークである。
本フレームワークは,(1)記憶バンク相互作用を通じて時間的特徴を抽出する検索型学習者,(2)時系列を情報的画像としてエンコードするビジョン型学習者,(3)文脈的テキスト記述を生成するテキスト型学習者,の3つのキーコンポーネントから構成される。
論文 参考訳(メタデータ) (2025-02-06T05:59:45Z) - Position: Empowering Time Series Reasoning with Multimodal LLMs [49.73647759532127]
マルチモーダル言語モデル (MLLM) は時系列解析においてより強力で柔軟な推論を可能にすると論じる。
我々は、MLLMにおける信頼、解釈可能性、堅牢な推論を優先する戦略を開発することで、この可能性を活用するよう研究者や実践者に呼びかける。
論文 参考訳(メタデータ) (2025-02-03T16:10:48Z) - Rethinking Time Series Forecasting with LLMs via Nearest Neighbor Contrastive Learning [1.7892194562398749]
本稿では, NNCL-TLLM: Nearest Neighbor Contrastive Learning for Time Series forecasting via Large Language Modelsを提案する。
まず、時系列互換テキストプロトタイプを作成し、各テキストプロトタイプは、その近傍に単語トークンを埋め込んだり、時系列の特徴を表現したりする。
次に、LLMの層正規化と位置埋め込みを微調整し、他の層をそのままに保ち、トレーニング可能なパラメータを減らし、計算コストを削減した。
論文 参考訳(メタデータ) (2024-12-06T06:32:47Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト is Key" (CiK) は、数値データを多種多様なテキストコンテキストと組み合わせた予測ベンチマークである。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
提案手法は,提案するベンチマークにおいて,他の試験手法よりも優れる簡易かつ効果的なLCMプロンプト法である。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Is Your LLM Outdated? Evaluating LLMs at Temporal Generalization [37.58752947129519]
LLM(Large Language Models)の急速な進歩は、評価方法論の進化に対する緊急の必要性を浮き彫りにしている。
しばしば静的な従来のベンチマークでは、絶えず変化する情報ランドスケープをキャプチャできない。
本研究では,過去,現在,未来に関連するテキストを理解し,予測し,生成する能力を含む時間的一般化について検討する。
論文 参考訳(メタデータ) (2024-05-14T09:31:31Z) - Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities [46.02234423159257]
大規模言語モデル(LLM)は多くの分野に適用され、近年急速に発展してきた。
近年の研究では、大規模な言語モデルを、さらなる微調整を行なわずに、アンフェロショット時系列推論として扱っている。
本研究は,LLMが周期性に欠けるデータセットにおいて,明確なパターンや傾向を持つ時系列予測において良好に機能することを示す。
論文 参考訳(メタデータ) (2024-02-16T17:15:28Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimesは時系列を言語トークンの埋め込み空間に投影し、任意の長さで将来予測を生成する。
時系列をプロンプトとして定式化し、ルックバックウィンドウを越えて予測のコンテキストを拡張する。
AutoTimesは、トレーニング可能なパラメータが0.1%、トレーニング/推論のスピードアップが5ドル以上で最先端を実現している。
論文 参考訳(メタデータ) (2024-02-04T06:59:21Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。