On-Device Soft Sensors: Real-Time Fluid Flow Estimation from Level Sensor Data
- URL: http://arxiv.org/abs/2311.15036v4
- Date: Sat, 12 Oct 2024 21:44:50 GMT
- Title: On-Device Soft Sensors: Real-Time Fluid Flow Estimation from Level Sensor Data
- Authors: Tianheng Ling, Chao Qian, Gregor Schiele,
- Abstract summary: Instead of deploying soft sensors on the Cloud, this study shift towards employing on-device soft sensors, promising heightened efficiency and bolstering data security.
Our approach substantially improves energy efficiency by deploying Artificial Intelligence (AI) directly on devices within a wireless sensor network.
- Score: 19.835810073852244
- License:
- Abstract: Soft sensors are crucial in bridging autonomous systems' physical and digital realms, enhancing sensor fusion and perception. Instead of deploying soft sensors on the Cloud, this study shift towards employing on-device soft sensors, promising heightened efficiency and bolstering data security. Our approach substantially improves energy efficiency by deploying Artificial Intelligence (AI) directly on devices within a wireless sensor network. Furthermore, the synergistic integration of the Microcontroller Unit and Field-Programmable Gate Array (FPGA) leverages the rapid AI inference capabilities of the latter. Empirical evidence from our real-world use case demonstrates that FPGA-based soft sensors achieve inference times ranging remarkably from 1.04 to 12.04 microseconds. These compelling results highlight the considerable potential of our innovative approach for executing real-time inference tasks efficiently, thereby presenting a feasible alternative that effectively addresses the latency challenges intrinsic to Cloud-based deployments.
Related papers
- Physics-Enhanced Graph Neural Networks For Soft Sensing in Industrial Internet of Things [6.374763930914524]
The Industrial Internet of Things (IIoT) is reshaping manufacturing, industrial processes, and infrastructure management.
achieving highly reliable IIoT can be hindered by factors such as the cost of installing large numbers of sensors, limitations in retrofitting existing systems with sensors, or harsh environmental conditions that may make sensor installation impractical.
We propose physics-enhanced Graph Neural Networks (GNNs), which integrate principles of physics into graph-based methodologies.
arXiv Detail & Related papers (2024-04-11T18:03:59Z) - One Masked Model is All You Need for Sensor Fault Detection, Isolation and Accommodation [1.0359008237358598]
We propose a novel framework for sensor fault detection using masked models and self-supervised learning.
We validate our proposed technique on both a public dataset and a real-world dataset from offshore GE wind turbines.
Our proposed technique has the potential to significantly improve the accuracy and reliability of sensor measurements in real-time.
arXiv Detail & Related papers (2024-03-24T13:44:57Z) - A Plug-in Tiny AI Module for Intelligent and Selective Sensor Data
Transmission [10.174575604689391]
We propose a novel sensing module to equip sensing frameworks with intelligent data transmission capabilities.
We integrate a highly efficient machine learning model placed near the sensor.
This model provides prompt feedback for the sensing system to transmit only valuable data while discarding irrelevant information.
arXiv Detail & Related papers (2024-02-03T05:41:39Z) - Progress in artificial intelligence applications based on the
combination of self-driven sensors and deep learning [6.117706409613191]
Wang Zhong lin and his team invented the triboelectric nanogenerator (TENG), which uses Maxwell displacement current as a driving force to directly convert mechanical stimuli into electrical signals.
This paper is based on the intelligent sound monitoring and recognition system of TENG, which has good sound recognition capability.
arXiv Detail & Related papers (2024-01-30T08:53:54Z) - HyperSense: Hyperdimensional Intelligent Sensing for Energy-Efficient Sparse Data Processing [5.570372733437123]
HyperSense efficiently controls Analog-to-Digital Converter (ADC) modules' data generation rate based on object presence predictions in sensor data.
Our FPGA-based domain-specific accelerator tailored for HyperSense achieves a 5.6x speedup compared to YOLOv4 on NVIDIA Jetson Orin.
arXiv Detail & Related papers (2024-01-04T01:12:33Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
"smart ecosystems" are being formed where sensing happens concurrently rather than standalone.
This is shifting the on-device inference paradigm towards deploying neural processing units (NPUs) at the edge.
We propose a novel early-exit scheduling that allows preemption at run time to account for the dynamicity introduced by the arrival and exiting processes.
arXiv Detail & Related papers (2022-09-27T15:04:01Z) - Bayesian Imitation Learning for End-to-End Mobile Manipulation [80.47771322489422]
Augmenting policies with additional sensor inputs, such as RGB + depth cameras, is a straightforward approach to improving robot perception capabilities.
We show that using the Variational Information Bottleneck to regularize convolutional neural networks improves generalization to held-out domains.
We demonstrate that our method is able to help close the sim-to-real gap and successfully fuse RGB and depth modalities.
arXiv Detail & Related papers (2022-02-15T17:38:30Z) - Feeling of Presence Maximization: mmWave-Enabled Virtual Reality Meets
Deep Reinforcement Learning [76.46530937296066]
This paper investigates the problem of providing ultra-reliable and energy-efficient virtual reality (VR) experiences for wireless mobile users.
To ensure reliable ultra-high-definition (UHD) video frame delivery to mobile users, a coordinated multipoint (CoMP) transmission technique and millimeter wave (mmWave) communications are exploited.
arXiv Detail & Related papers (2021-06-03T08:35:10Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z) - Energy Aware Deep Reinforcement Learning Scheduling for Sensors
Correlated in Time and Space [62.39318039798564]
We propose a scheduling mechanism capable of taking advantage of correlated information.
The proposed mechanism is capable of determining the frequency with which sensors should transmit their updates.
We show that our solution can significantly extend the sensors' lifetime.
arXiv Detail & Related papers (2020-11-19T09:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.