Data Sensor Fusion In Digital Twin Technology For Enhanced Capabilities In A Home Environment
- URL: http://arxiv.org/abs/2502.08874v1
- Date: Thu, 13 Feb 2025 01:14:30 GMT
- Title: Data Sensor Fusion In Digital Twin Technology For Enhanced Capabilities In A Home Environment
- Authors: Benjamin Momoh, Salisu Yahaya,
- Abstract summary: This paper investigates the integration of data sensor fusion in digital twin technology to bolster home environment capabilities.
The research integrates Cyber-physical systems, IoT, AI, and robotics to fortify digital twin capabilities.
- Score: 0.0
- License:
- Abstract: This paper investigates the integration of data sensor fusion in digital twin technology to bolster home environment capabilities, particularly in the context of challenges brought on by the coronavirus pandemic and its economic effects. The study underscores the crucial role of digital transformation in not just adapting to, but also mitigating disruptions during the fourth industrial revolution. Using the Wit Motion sensor, data was collected for activities such as walking, working, sitting, and lying, with sensors measuring accelerometers, gyroscopes, and magnetometers. The research integrates Cyber-physical systems, IoT, AI, and robotics to fortify digital twin capabilities. The paper compares sensor fusion methods, including feature-level fusion, decision-level fusion, and Kalman filter fusion, alongside machine learning models like SVM, GBoost, and Random Forest to assess model effectiveness. Results show that sensor fusion significantly improves the accuracy and reliability of these models, as it compensates for individual sensor weaknesses, particularly with magnetometers. Despite higher accuracy in ideal conditions, integrating data from multiple sensors ensures more consistent and reliable results in real-world settings, thereby establishing a robust system that can be confidently applied in practical scenarios.
Related papers
- Virtual Sensing-Enabled Digital Twin Framework for Real-Time Monitoring of Nuclear Systems Leveraging Deep Neural Operators [0.36651088217486427]
This paper introduces the use of Deep Operator Networks (DeepONet) as a core component of a digital twin framework.
DeepONet serves as a dynamic and scalable virtual sensor by accurately mapping the interplay between operational input parameters and spatially distributed system behaviors.
Our results show that DeepONet achieves accurate predictions with low mean squared error and relative L2 error and can make predictions on unknown data 1400 times faster than traditional CFD simulations.
arXiv Detail & Related papers (2024-10-17T16:56:04Z) - One Masked Model is All You Need for Sensor Fault Detection, Isolation and Accommodation [1.0359008237358598]
We propose a novel framework for sensor fault detection using masked models and self-supervised learning.
We validate our proposed technique on both a public dataset and a real-world dataset from offshore GE wind turbines.
Our proposed technique has the potential to significantly improve the accuracy and reliability of sensor measurements in real-time.
arXiv Detail & Related papers (2024-03-24T13:44:57Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Learning Online Multi-Sensor Depth Fusion [100.84519175539378]
SenFuNet is a depth fusion approach that learns sensor-specific noise and outlier statistics.
We conduct experiments with various sensor combinations on the real-world CoRBS and Scene3D datasets.
arXiv Detail & Related papers (2022-04-07T10:45:32Z) - Bayesian Imitation Learning for End-to-End Mobile Manipulation [80.47771322489422]
Augmenting policies with additional sensor inputs, such as RGB + depth cameras, is a straightforward approach to improving robot perception capabilities.
We show that using the Variational Information Bottleneck to regularize convolutional neural networks improves generalization to held-out domains.
We demonstrate that our method is able to help close the sim-to-real gap and successfully fuse RGB and depth modalities.
arXiv Detail & Related papers (2022-02-15T17:38:30Z) - Data-based Design of Inferential Sensors for Petrochemical Industry [0.0]
Inferential (or soft) sensors are used in industry to infer the values of imprecisely and rarely measured (or completely unmeasured) variables from variables measured online.
This work is focused on the design of inferential sensors for product composition of an industrial distillation column in two oil refinery units.
arXiv Detail & Related papers (2021-06-25T08:48:50Z) - Anomaly Detection through Transfer Learning in Agriculture and
Manufacturing IoT Systems [4.193524211159057]
In this paper, we analyze data from sensors deployed in an agricultural farm with data from seven different kinds of sensors, and from an advanced manufacturing testbed with vibration sensors.
We show how in these two application domains, predictive failure classification can be achieved, thus paving the way for predictive maintenance.
arXiv Detail & Related papers (2021-02-11T02:37:27Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z) - SensiX: A Platform for Collaborative Machine Learning on the Edge [69.1412199244903]
We present SensiX, a personal edge platform that stays between sensor data and sensing models.
We demonstrate its efficacy in developing motion and audio-based multi-device sensing systems.
Our evaluation shows that SensiX offers a 7-13% increase in overall accuracy and up to 30% increase across different environment dynamics at the expense of 3mW power overhead.
arXiv Detail & Related papers (2020-12-04T23:06:56Z) - Learning Selective Sensor Fusion for States Estimation [47.76590539558037]
We propose SelectFusion, an end-to-end selective sensor fusion module.
During prediction, the network is able to assess the reliability of the latent features from different sensor modalities.
We extensively evaluate all fusion strategies in both public datasets and on progressively degraded datasets.
arXiv Detail & Related papers (2019-12-30T20:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.