論文の概要: MPCNN: A Novel Matrix Profile Approach for CNN-based Sleep Apnea
Classification
- arxiv url: http://arxiv.org/abs/2311.15041v1
- Date: Sat, 25 Nov 2023 14:39:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-29 22:21:15.513258
- Title: MPCNN: A Novel Matrix Profile Approach for CNN-based Sleep Apnea
Classification
- Title(参考訳): MPCNN: CNNに基づく睡眠時無呼吸分類のための新しいマトリックスプロファイルアプローチ
- Authors: Hieu X. Nguyen, Duong V. Nguyen, Hieu H. Pham, and Cuong D. Do
- Abstract要約: 睡眠時無呼吸症(SA)は、世界的な健康問題を引き起こす重要な呼吸器疾患である。
心電図(ECG)に基づくSA診断における,いくつかの機械学習モデルとディープラーニングモデルについて検討した。
本稿では,心電図信号の包括的セグメントを深く掘り下げることで,この診断ギャップに対処する革新的な手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sleep apnea (SA) is a significant respiratory condition that poses a major
global health challenge. Previous studies have investigated several machine and
deep learning models for electrocardiogram (ECG)-based SA diagnoses. Despite
these advancements, conventional feature extractions derived from ECG signals,
such as R-peaks and RR intervals, may fail to capture crucial information
encompassed within the complete PQRST segments. In this study, we propose an
innovative approach to address this diagnostic gap by delving deeper into the
comprehensive segments of the ECG signal. The proposed methodology draws
inspiration from Matrix Profile algorithms, which generate an Euclidean
distance profile from fixed-length signal subsequences. From this, we derived
the Min Distance Profile (MinDP), Max Distance Profile (MaxDP), and Mean
Distance Profile (MeanDP) based on the minimum, maximum, and mean of the
profile distances, respectively. To validate the effectiveness of our approach,
we use the modified LeNet-5 architecture as the primary CNN model, along with
two existing lightweight models, BAFNet and SE-MSCNN, for ECG classification
tasks. Our extensive experimental results on the PhysioNet Apnea-ECG dataset
revealed that with the new feature extraction method, we achieved a per-segment
accuracy up to 92.11 \% and a per-recording accuracy of 100\%. Moreover, it
yielded the highest correlation compared to state-of-the-art methods, with a
correlation coefficient of 0.989. By introducing a new feature extraction
method based on distance relationships, we enhanced the performance of certain
lightweight models, showing potential for home sleep apnea test (HSAT) and SA
detection in IoT devices. The source code for this work is made publicly
available in GitHub: https://github.com/vinuni-vishc/MPCNN-Sleep-Apnea.
- Abstract(参考訳): 睡眠時無呼吸(SA)は重要な呼吸状態であり、世界的な健康問題を引き起こす。
心電図(ECG)に基づくSA診断における,いくつかの機械学習モデルとディープラーニングモデルについて検討した。
これらの進歩にもかかわらず、RピークやRR間隔などのECG信号から抽出される従来の特徴抽出は、完全なPQRSTセグメントに含まれる重要な情報を捕捉できない可能性がある。
本研究では,ecg信号の包括的セグメントを深く掘り下げることで,この診断ギャップに対処するための革新的なアプローチを提案する。
提案手法は,固定長信号列からユークリッド距離プロファイルを生成する行列プロファイルアルゴリズムから着想を得ている。
この結果から,Min Distance Profile (MinDP), Max Distance Profile (MaxDP), Mean Distance Profile (MeanDP) を各プロファイル距離の最小値,最大値,平均値に基づいて抽出した。
提案手法の有効性を検証するため,修正LeNet-5アーキテクチャを主要なCNNモデルとし,既存の2つの軽量モデルであるBAFNetとSE-MSCNNをECG分類タスクに用いる。
PhysioNet Apnea-ECG データセットの広範な実験結果から,新しい特徴抽出法により,最大92.11 \%,記録毎の精度が100\%に達することがわかった。
さらに,その相関係数は0.989で,最先端法と比較して最も高い相関率を示した。
距離関係に基づく新たな特徴抽出手法を導入することにより,特定の軽量モデルの性能を高め,IoTデバイスにおけるホーム睡眠時無呼吸テスト(HSAT)とSA検出の可能性を示した。
この作業のソースコードはGitHubで公開されている。 https://github.com/vinuni-vishc/MPCNN-Sleep-Apnea。
関連論文リスト
- STAL: Spike Threshold Adaptive Learning Encoder for Classification of Pain-Related Biosignal Data [2.0738462952016232]
本稿では,EmoPainデータセットを用いた慢性腰痛 (CLBP) 分類のためのスパイキングニューラルネットワーク (SNN) の最初の応用について述べる。
本稿では,連続生体信号をスパイク列車に変換する訓練可能なエンコーダであるSpike Threshold Adaptive Learning (STAL)を紹介する。
また,SEMG と IMU データのマルチストリーム処理のためのスパイキングリカレントニューラルネットワーク (SRNN) 分類器のアンサンブルを提案する。
論文 参考訳(メタデータ) (2024-07-11T10:15:52Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - HARDC : A novel ECG-based heartbeat classification method to detect
arrhythmia using hierarchical attention based dual structured RNN with
dilated CNN [3.8791511769387625]
不整脈分類のための拡張CNN (HARDC) 法を用いたハイブリッド階層型双方向リカレントニューラルネットワークを開発した。
提案したHARDCは、拡張CNNと双方向リカレントニューラルネットワークユニット(BiGRU-BiLSTM)アーキテクチャをフル活用して、融合機能を生成する。
以上の結果から,複数種類の不整脈信号の分類を自動化し,高度に計算した手法が有望であることが示唆された。
論文 参考訳(メタデータ) (2023-03-06T13:26:29Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
睡眠障害は、世界中の主要な病気の1つです。
専門家が使用する基本的なツールはPolysomnogramで、睡眠中に記録された様々な信号の集合である。
専門家は、標準的なガイドラインの1つに従って異なる信号を採点する必要があります。
論文 参考訳(メタデータ) (2021-03-30T09:59:56Z) - SE-ECGNet: A Multi-scale Deep Residual Network with
Squeeze-and-Excitation Module for ECG Signal Classification [6.124438924401066]
ECG信号分類タスクのためのマルチスケール深部残差ネットワークを開発しています。
我々は,マルチリード信号を2次元行列として扱うことを提案する。
提案モデルは,mit-bihデータセットでは99.2%,alibabaデータセットでは89.4%のf1-scoreを実現する。
論文 参考訳(メタデータ) (2020-12-10T08:37:44Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - DENS-ECG: A Deep Learning Approach for ECG Signal Delineation [15.648061765081264]
本稿では,心拍のリアルタイムセグメンテーションのためのディープラーニングモデルを提案する。
提案アルゴリズムはDENS-ECGアルゴリズムと呼ばれ、畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)モデルを組み合わせたものである。
論文 参考訳(メタデータ) (2020-05-18T13:13:41Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z) - Detection of Obstructive Sleep Apnoea Using Features Extracted from
Segmented Time-Series ECG Signals Using a One Dimensional Convolutional
Neural Network [0.19686770963118383]
本研究は,単チャンネル心電図(ECG)信号から得られた閉塞性睡眠時無呼吸症(OSA)の自動検出を目的とした1次元畳み込みニューラルネットワーク(1DCNN)モデルを提案する。
このモデルは、畳み込み、最大プール層と、隠蔽層とSoftMax出力からなる完全に接続された多層パーセプトロン(MLP)を用いて構成されている。
これは、モデルが高い精度でApnoeaの存在を識別できることを示している。
論文 参考訳(メタデータ) (2020-02-03T15:47:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。