論文の概要: STAL: Spike Threshold Adaptive Learning Encoder for Classification of Pain-Related Biosignal Data
- arxiv url: http://arxiv.org/abs/2407.08362v1
- Date: Thu, 11 Jul 2024 10:15:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 17:59:20.695443
- Title: STAL: Spike Threshold Adaptive Learning Encoder for Classification of Pain-Related Biosignal Data
- Title(参考訳): STAL: 痛み関連生体信号データの分類のためのスパイク閾値適応学習エンコーダ
- Authors: Freek Hens, Mohammad Mahdi Dehshibi, Leila Bagheriye, Mahyar Shahsavari, Ana Tajadura-Jiménez,
- Abstract要約: 本稿では,EmoPainデータセットを用いた慢性腰痛 (CLBP) 分類のためのスパイキングニューラルネットワーク (SNN) の最初の応用について述べる。
本稿では,連続生体信号をスパイク列車に変換する訓練可能なエンコーダであるSpike Threshold Adaptive Learning (STAL)を紹介する。
また,SEMG と IMU データのマルチストリーム処理のためのスパイキングリカレントニューラルネットワーク (SRNN) 分類器のアンサンブルを提案する。
- 参考スコア(独自算出の注目度): 2.0738462952016232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents the first application of spiking neural networks (SNNs) for the classification of chronic lower back pain (CLBP) using the EmoPain dataset. Our work has two main contributions. We introduce Spike Threshold Adaptive Learning (STAL), a trainable encoder that effectively converts continuous biosignals into spike trains. Additionally, we propose an ensemble of Spiking Recurrent Neural Network (SRNN) classifiers for the multi-stream processing of sEMG and IMU data. To tackle the challenges of small sample size and class imbalance, we implement minority over-sampling with weighted sample replacement during batch creation. Our method achieves outstanding performance with an accuracy of 80.43%, AUC of 67.90%, F1 score of 52.60%, and Matthews Correlation Coefficient (MCC) of 0.437, surpassing traditional rate-based and latency-based encoding methods. The STAL encoder shows superior performance in preserving temporal dynamics and adapting to signal characteristics. Importantly, our approach (STAL-SRNN) outperforms the best deep learning method in terms of MCC, indicating better balanced class prediction. This research contributes to the development of neuromorphic computing for biosignal analysis. It holds promise for energy-efficient, wearable solutions in chronic pain management.
- Abstract(参考訳): 本稿では,EmoPainデータセットを用いた慢性腰痛 (CLBP) 分類のためのスパイキングニューラルネットワーク (SNN) の最初の応用について述べる。
私たちの仕事は2つの主な貢献があります。
本稿では,連続生体信号をスパイク列車に変換する訓練可能なエンコーダであるSpike Threshold Adaptive Learning (STAL)を紹介する。
さらに,SEMG と IMU データのマルチストリーム処理のためのスパイキングリカレントニューラルネットワーク (SRNN) 分類器のアンサンブルを提案する。
小さいサンプルサイズとクラス不均衡の課題に対処するため、バッチ生成時にサンプル置換を重み付けしたマイノリティオーバーサンプリングを実装した。
提案手法は,80.43%の精度,67.90%のAUC,52.60%のF1スコア,0.437のMaths correlation Coefficient(MCC)を達成し,従来のレートベースおよび遅延ベース符号化法を上回る性能を示した。
STALエンコーダは、時間的ダイナミクスの保存と信号特性への適応において優れた性能を示す。
重要なこととして,我々の手法(STAL-SRNN)はMCCで最高の深層学習法より優れており,バランスの取れたクラス予測の精度が向上している。
本研究は,生体信号解析のためのニューロモルフィックコンピューティングの開発に寄与する。
慢性的な痛み管理において、エネルギー効率が高くウェアラブルなソリューションを約束している。
関連論文リスト
- Electroencephalogram Emotion Recognition via AUC Maximization [0.0]
不均衡データセットは神経科学、認知科学、医学診断などの分野で大きな課題を提起する。
本研究は,DEAPデータセットにおけるライキングラベルを例として,イシュークラスの不均衡に対処する。
論文 参考訳(メタデータ) (2024-08-16T19:08:27Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - Multiple Instance Ensembling For Paranasal Anomaly Classification In The
Maxillary Sinus [46.1292414445895]
副鼻腔奇形は幅広い形態学的特徴を持つ。
副鼻腔異常分類への現在のアプローチは、一度に1つの異常を特定することに制約されている。
3次元畳み込みニューラルネットワーク(CNN)を用いて正常上顎骨(MS)とMSをポリープや嚢胞で分類する可能性を検討した。
論文 参考訳(メタデータ) (2023-03-31T09:23:27Z) - HARDC : A novel ECG-based heartbeat classification method to detect
arrhythmia using hierarchical attention based dual structured RNN with
dilated CNN [3.8791511769387625]
不整脈分類のための拡張CNN (HARDC) 法を用いたハイブリッド階層型双方向リカレントニューラルネットワークを開発した。
提案したHARDCは、拡張CNNと双方向リカレントニューラルネットワークユニット(BiGRU-BiLSTM)アーキテクチャをフル活用して、融合機能を生成する。
以上の結果から,複数種類の不整脈信号の分類を自動化し,高度に計算した手法が有望であることが示唆された。
論文 参考訳(メタデータ) (2023-03-06T13:26:29Z) - Predicting microsatellite instability and key biomarkers in colorectal
cancer from H&E-stained images: Achieving SOTA with Less Data using Swin
Transformer [3.6695403836792493]
シフトウインドウ(Swin-T)を用いた大腸癌バイオマーカーの効率的なワークフローを開発した。
Swin-Tは小さなトレーニングデータセットを使用して極めて効率的で、200-500のトレーニングサンプルだけで堅牢な予測性能を示す。
これらのデータは、Swin-Tが現在のMSIの最先端アルゴリズムよりも5~10倍効率が高いことを示している。
論文 参考訳(メタデータ) (2022-08-22T02:32:30Z) - Parameter estimation for WMTI-Watson model of white matter using
encoder-decoder recurrent neural network [0.0]
本研究では,ラットおよびヒト脳のデータセット上でのNLLS,RNN法および多層パーセプトロン(MLP)の性能を評価する。
提案手法は,NLLSよりも計算時間を大幅に短縮できるという利点を示した。
論文 参考訳(メタデータ) (2022-03-01T16:33:15Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
スパイキングニューラルネットワーク(SNN)は、バイナリニューラルダイナミックアクティベーションを通じて処理することで、生物学的脳の効率の一部をキャプチャする。
本稿では, シナプス重みを共有しながら, 独立したスパイキング信号をサンプリングする複数のコンパートメントを活用することを提案する。
鍵となる考え方は、これらの信号を使ってログライクなトレーニング基準のより正確な統計的推定と勾配を求めることである。
論文 参考訳(メタデータ) (2021-02-05T16:39:42Z) - Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks [77.34726150561087]
本稿では,量子化ニューラルネットワークのトレーニングに適用可能な離散最適化手法であるGradient Markov Descent (SMGD)を紹介する。
アルゴリズム性能の理論的保証と数値的な結果の促進を提供する。
論文 参考訳(メタデータ) (2020-08-25T15:48:15Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。