Atomique: A Quantum Compiler for Reconfigurable Neutral Atom Arrays
- URL: http://arxiv.org/abs/2311.15123v2
- Date: Thu, 2 May 2024 04:49:21 GMT
- Title: Atomique: A Quantum Compiler for Reconfigurable Neutral Atom Arrays
- Authors: Hanrui Wang, Pengyu Liu, Daniel Bochen Tan, Yilian Liu, Jiaqi Gu, David Z. Pan, Jason Cong, Umut A. Acar, Song Han,
- Abstract summary: We introduce Atomique, a compilation framework designed for qubit mapping, atom movement, and gate scheduling.
Atomique consistently outperforms IBM Superconducting, FAA with long-range gates, and FAA with rectangular and triangular topologies.
- Score: 19.543879449267372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The neutral atom array has gained prominence in quantum computing for its scalability and operation fidelity. Previous works focus on fixed atom arrays (FAAs) that require extensive SWAP operations for long-range interactions. This work explores a novel architecture reconfigurable atom arrays (RAAs), also known as field programmable qubit arrays (FPQAs), which allows for coherent atom movements during circuit execution under some constraints. Such atom movements, which are unique to this architecture, could reduce the cost of long-range interactions significantly if the atom movements could be scheduled strategically. In this work, we introduce Atomique, a compilation framework designed for qubit mapping, atom movement, and gate scheduling for RAA. Atomique contains a qubit-array mapper to decide the coarse-grained mapping of the qubits to arrays, leveraging MAX k-Cut on a constructed gate frequency graph to minimize SWAP overhead. Subsequently, a qubit-atom mapper determines the fine-grained mapping of qubits to specific atoms in the array and considers load balance to prevent hardware constraint violations. We further propose a router that identifies parallel gates, schedules them simultaneously, and reduces depth. We evaluate Atomique across 20+ diverse benchmarks, including generic circuits (arbitrary, QASMBench, SupermarQ), quantum simulation, and QAOA circuits. Atomique consistently outperforms IBM Superconducting, FAA with long-range gates, and FAA with rectangular and triangular topologies, achieving significant reductions in depth and the number of two-qubit gates.
Related papers
- DasAtom: A Divide-and-Shuttle Atom Approach to Quantum Circuit Transformation [2.0861727452345766]
Neutral atom (NA) quantum systems are emerging as a leading platform for quantum computation.
DasAtom is a novel divide-and-shuttle atom approach designed to optimise quantum circuit transformation for NA devices.
DasAtom achieves a 414x improvement in fidelity over the move-based algorithm Enola and a 10.6x improvement over the SWAP-based algorithm Tetris.
arXiv Detail & Related papers (2024-09-05T02:23:32Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - An Abstract Model and Efficient Routing for Logical Entangling Gates on Zoned Neutral Atom Architectures [4.306566710489809]
Recent achievements have demonstrated the potential of neutral atom architectures for fault-tolerant quantum computing.
This paper provides an abstract model of the novel architecture and an efficient solution to the routing problem of entangling gates.
In addition to that, we consider logical qubit arrays, each of which encodes one logical qubit.
arXiv Detail & Related papers (2024-05-13T18:00:01Z) - Q-Pilot: Field Programmable Qubit Array Compilation with Flying Ancillas [17.228668036464978]
We present Q-Pilot, a scalable compiler for field programmable qubit array (FPQA)
We map all data qubits to fixed atoms while utilizing movable atoms to route for 2-qubit gates between data qubits.
Q-Pilot effectively harnesses the flexibility of FPQA, achieving reductions of 1.4x, 27.7x, and 6.3x in circuit depth for 100-qubit random, quantum simulation, and QAOA circuits, respectively.
arXiv Detail & Related papers (2023-11-26T03:11:44Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Efficient algorithms to solve atom reconfiguration problems. II. The
assignment-rerouting-ordering (aro) algorithm [51.02512563152503]
atom reconfiguration problems require solving an atom problem quickly and efficiently.
A typical approach to solve atom reconfiguration problems is to use an assignment algorithm to determine which atoms to move to which traps.
This approach does not optimize for the number of displaced atoms nor the number of times each atom is displaced.
We propose the assignment-rerouting-ordering (aro) algorithm to improve the performance of assignment-based algorithms in solving atom reconfiguration problems.
arXiv Detail & Related papers (2022-12-11T19:48:25Z) - Efficient algorithms to solve atom reconfiguration problems. I. The
redistribution-reconfiguration (red-rec) algorithm [51.02512563152503]
We numerically quantify the performance of the red-rec algorithm, both in the absence and in the presence of loss.
We show that the number of traps required to prepare a compact-centered configuration of atoms on a grid with a mean success probability of one half scales as the 3/2 power of the number of desired atoms.
The red-rec algorithm admits an efficient implementation that can readily be deployed on real-time control systems.
arXiv Detail & Related papers (2022-12-07T19:00:01Z) - Accelerating the assembly of defect-free atomic arrays with maximum
parallelisms [16.079283601909435]
Defect-free atomic arrays have been demonstrated as a scalable and fully-controllable platform for quantum simulations and quantum computations.
We design an integrated measurement and feedback system, based on field programmable gate array (FPGA), to quickly assemble two-dimensional defect-free atomic array.
We present the overall performance for different target geometries, and demonstrate a significant reduction in rearrangement time and the potential to scale up defect-free atomic array system to thousands of qubits.
arXiv Detail & Related papers (2022-10-19T08:11:01Z) - A dual-element, two-dimensional atom array with continuous-mode
operation [0.3262230127283452]
We introduce a dual-element atom array with individual control of single rubidium and cesium atoms.
Our results enable avenues for ancilla-assisted quantum protocols such as quantum non-demolition measurements and quantum error correction.
arXiv Detail & Related papers (2021-10-11T18:00:17Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Interleaving: Modular architectures for fault-tolerant photonic quantum
computing [50.591267188664666]
Photonic fusion-based quantum computing (FBQC) uses low-loss photonic delays.
We present a modular architecture for FBQC in which these components are combined to form "interleaving modules"
Exploiting the multiplicative power of delays, each module can add thousands of physical qubits to the computational Hilbert space.
arXiv Detail & Related papers (2021-03-15T18:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.