DasAtom: A Divide-and-Shuttle Atom Approach to Quantum Circuit Transformation
- URL: http://arxiv.org/abs/2409.03185v1
- Date: Thu, 5 Sep 2024 02:23:32 GMT
- Title: DasAtom: A Divide-and-Shuttle Atom Approach to Quantum Circuit Transformation
- Authors: Yunqi Huang, Dingchao Gao, Shenggang Ying, Sanjiang Li,
- Abstract summary: Neutral atom (NA) quantum systems are emerging as a leading platform for quantum computation.
DasAtom is a novel divide-and-shuttle atom approach designed to optimise quantum circuit transformation for NA devices.
DasAtom achieves a 414x improvement in fidelity over the move-based algorithm Enola and a 10.6x improvement over the SWAP-based algorithm Tetris.
- Score: 2.0861727452345766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neutral atom (NA) quantum systems are emerging as a leading platform for quantum computation, offering superior or competitive qubit count and gate fidelity compared to superconducting circuits and ion traps. However, the unique features of NA devices, such as long-range interactions, long qubit coherence time, and the ability to physically move qubits, present distinct challenges for quantum circuit compilation. In this paper, we introduce DasAtom, a novel divide-and-shuttle atom approach designed to optimise quantum circuit transformation for NA devices by leveraging these capabilities. DasAtom partitions circuits into subcircuits, each associated with a qubit mapping that allows all gates within the subcircuit to be directly executed. The algorithm then shuttles atoms to transition seamlessly from one mapping to the next, enhancing both execution efficiency and overall fidelity. For a 30-qubit Quantum Fourier Transform (QFT), DasAtom achieves a 414x improvement in fidelity over the move-based algorithm Enola and a 10.6x improvement over the SWAP-based algorithm Tetris. Notably, this improvement is expected to increase exponentially with the number of qubits, positioning DasAtom as a highly promising solution for scaling quantum computation on NA platforms.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Revisiting the Mapping of Quantum Circuits: Entering the Multi-Core Era [2.465579331213113]
We introduce the Hungarian Qubit Assignment (HQA) algorithm, a multi-core mapping algorithm designed to optimize qubit assignments to cores with the aim of reducing inter-core communications.
Our evaluation of HQA against state-of-the-art circuit mapping algorithms for modular architectures reveals a $4.9times$ and $1.6times$ improvement in terms of execution time and non-local communications.
arXiv Detail & Related papers (2024-03-25T21:31:39Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Universal Quantum Optimization with Cold Atoms in an Optical Cavity [14.568979066292918]
We show the atom cavity system is universal for quantum optimization with arbitrary connectivity.
We consider a single-mode cavity and develop a Raman coupling scheme by which the engineered quantum Hamiltonian for atoms directly encodes number partition problems.
arXiv Detail & Related papers (2023-06-29T13:42:19Z) - A Quantum Computing Implementation of Nuclear-Electronic Orbital (NEO)
Theory: Towards an Exact pre-Born-Oppenheimer Formulation of Molecular
Quantum Systems [0.0]
We introduce a methodology for the efficient quantum treatment of the electron-nuclear problem on near-term quantum computers.
We generalize the electronic two-qubit tapering scheme to include nuclei by exploiting symmetries inherent in the NEO framework.
arXiv Detail & Related papers (2023-02-15T17:55:15Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - QuantumCircuitOpt: An Open-source Framework for Provably Optimal Quantum
Circuit Design [0.0]
We propose QuantumCircuitOpt, a novel open-source framework which implements mathematical optimization formulations and algorithms for decomposing arbitrary unitary gates into a sequence of hardware-native gates.
We show that QCOpt can find up to 57% reduction in the number of necessary gates on circuits with up to four qubits, and in run times less than a few minutes on commodity computing hardware.
We also show how the QCOpt package can be adapted to various built-in types of native gate sets, based on different hardware platforms like those produced by IBM, Rigetti and Google.
arXiv Detail & Related papers (2021-11-23T06:45:40Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Automatically Differentiable Quantum Circuit for Many-qubit State
Preparation [1.5662820454886202]
We propose the automatically differentiable quantum circuit (ADQC) approach to efficiently prepare arbitrary quantum many-qubit states.
The circuit is optimized by updating the latent gates using back propagation to minimize the distance between the evolved and target states.
Our work sheds light on the "intelligent construction" of quantum circuits for many-qubit systems by combining with the machine learning methods.
arXiv Detail & Related papers (2021-04-30T12:22:26Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.