GAIA: Zero-shot Talking Avatar Generation
- URL: http://arxiv.org/abs/2311.15230v2
- Date: Thu, 14 Mar 2024 11:49:40 GMT
- Title: GAIA: Zero-shot Talking Avatar Generation
- Authors: Tianyu He, Junliang Guo, Runyi Yu, Yuchi Wang, Jialiang Zhu, Kaikai An, Leyi Li, Xu Tan, Chunyu Wang, Han Hu, HsiangTao Wu, Sheng Zhao, Jiang Bian,
- Abstract summary: We introduce GAIA (Generative AI for Avatar), which eliminates the domain priors in talking avatar generation.
GAIA beats previous baseline models in terms of naturalness, diversity, lip-sync quality, and visual quality.
It is general and enables different applications like controllable talking avatar generation and text-instructed avatar generation.
- Score: 64.78978434650416
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Zero-shot talking avatar generation aims at synthesizing natural talking videos from speech and a single portrait image. Previous methods have relied on domain-specific heuristics such as warping-based motion representation and 3D Morphable Models, which limit the naturalness and diversity of the generated avatars. In this work, we introduce GAIA (Generative AI for Avatar), which eliminates the domain priors in talking avatar generation. In light of the observation that the speech only drives the motion of the avatar while the appearance of the avatar and the background typically remain the same throughout the entire video, we divide our approach into two stages: 1) disentangling each frame into motion and appearance representations; 2) generating motion sequences conditioned on the speech and reference portrait image. We collect a large-scale high-quality talking avatar dataset and train the model on it with different scales (up to 2B parameters). Experimental results verify the superiority, scalability, and flexibility of GAIA as 1) the resulting model beats previous baseline models in terms of naturalness, diversity, lip-sync quality, and visual quality; 2) the framework is scalable since larger models yield better results; 3) it is general and enables different applications like controllable talking avatar generation and text-instructed avatar generation.
Related papers
- GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations [54.94362657501809]
We propose a new method to generate highly dynamic and deformable human head avatars from multi-view imagery in real-time.
At the core of our method is a hierarchical representation of head models that allows to capture the complex dynamics of facial expressions and head movements.
We train this coarse-to-fine facial avatar model along with the head pose as a learnable parameter in an end-to-end framework.
arXiv Detail & Related papers (2024-09-18T13:05:43Z) - DEGAS: Detailed Expressions on Full-Body Gaussian Avatars [13.683836322899953]
We present DEGAS, the first 3D Gaussian Splatting (3DGS)-based modeling method for full-body avatars with rich facial expressions.
We propose to adopt the expression latent space trained solely on 2D portrait images, bridging the gap between 2D talking faces and 3D avatars.
arXiv Detail & Related papers (2024-08-20T06:52:03Z) - NPGA: Neural Parametric Gaussian Avatars [46.52887358194364]
We propose a data-driven approach to create high-fidelity controllable avatars from multi-view video recordings.
We build our method around 3D Gaussian splatting for its highly efficient rendering and to inherit the topological flexibility of point clouds.
We evaluate our method on the public NeRSemble dataset, demonstrating that NPGA significantly outperforms the previous state-of-the-art avatars on the self-reenactment task by 2.6 PSNR.
arXiv Detail & Related papers (2024-05-29T17:58:09Z) - GeneAvatar: Generic Expression-Aware Volumetric Head Avatar Editing from a Single Image [89.70322127648349]
We propose a generic avatar editing approach that can be universally applied to various 3DMM driving volumetric head avatars.
To achieve this goal, we design a novel expression-aware modification generative model, which enables lift 2D editing from a single image to a consistent 3D modification field.
arXiv Detail & Related papers (2024-04-02T17:58:35Z) - DivAvatar: Diverse 3D Avatar Generation with a Single Prompt [95.9978722953278]
DivAvatar is a framework that generates diverse avatars from a single text prompt.
It has two key designs that help achieve generation diversity and visual quality.
Extensive experiments show that DivAvatar is highly versatile in generating avatars of diverse appearances.
arXiv Detail & Related papers (2024-02-27T08:10:31Z) - Reality's Canvas, Language's Brush: Crafting 3D Avatars from Monocular Video [14.140380599168628]
ReCaLaB is a pipeline that learns high-fidelity 3D human avatars from just a single RGB video.
A pose-conditioned NeRF is optimized to volumetrically represent a human subject in canonical T-pose.
An image-conditioned diffusion model thereby helps to animate appearance and pose of the 3D avatar to create video sequences with previously unseen human motion.
arXiv Detail & Related papers (2023-12-08T01:53:06Z) - AvatarFusion: Zero-shot Generation of Clothing-Decoupled 3D Avatars
Using 2D Diffusion [34.609403685504944]
We present AvatarFusion, a framework for zero-shot text-to-avatar generation.
We use a latent diffusion model to provide pixel-level guidance for generating human-realistic avatars.
We also introduce a novel optimization method, called Pixel-Semantics Difference-Sampling (PS-DS), which semantically separates the generation of body and clothes.
arXiv Detail & Related papers (2023-07-13T02:19:56Z) - AvatarBooth: High-Quality and Customizable 3D Human Avatar Generation [14.062402203105712]
AvatarBooth is a novel method for generating high-quality 3D avatars using text prompts or specific images.
Our key contribution is the precise avatar generation control by using dual fine-tuned diffusion models.
We present a multi-resolution rendering strategy that facilitates coarse-to-fine supervision of 3D avatar generation.
arXiv Detail & Related papers (2023-06-16T14:18:51Z) - OTAvatar: One-shot Talking Face Avatar with Controllable Tri-plane
Rendering [81.55960827071661]
Controllability, generalizability and efficiency are the major objectives of constructing face avatars represented by neural implicit field.
We propose One-shot Talking face Avatar (OTAvatar), which constructs face avatars by a generalized controllable tri-plane rendering solution.
arXiv Detail & Related papers (2023-03-26T09:12:03Z) - AvatarGen: a 3D Generative Model for Animatable Human Avatars [108.11137221845352]
AvatarGen is the first method that enables not only non-rigid human generation with diverse appearance but also full control over poses and viewpoints.
To model non-rigid dynamics, it introduces a deformation network to learn pose-dependent deformations in the canonical space.
Our method can generate animatable human avatars with high-quality appearance and geometry modeling, significantly outperforming previous 3D GANs.
arXiv Detail & Related papers (2022-08-01T01:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.