論文の概要: ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2311.15243v3
- Date: Fri, 22 Mar 2024 07:05:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 22:30:18.443391
- Title: ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection
- Title(参考訳): 散逸検出のためのIDライクなプロンプト学習
- Authors: Yichen Bai, Zongbo Han, Changqing Zhang, Bing Cao, Xiaoheng Jiang, Qinghua Hu,
- Abstract要約: 本稿では,CLIP citeDBLP:conf/icml/RadfordKHRGASAM21を用いて,IDライクな外れ値を検出する新しいOOD検出フレームワークを提案する。
強力なCLIPから恩恵を受けるため、モデルのプロンプトを学習するためには、少数のIDサンプルしか必要ありません。
本手法は,様々な実世界の画像データセットにおいて,より優れた数ショット学習性能を実現する。
- 参考スコア(独自算出の注目度): 47.16254775587534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-distribution (OOD) detection methods often exploit auxiliary outliers to train model identifying OOD samples, especially discovering challenging outliers from auxiliary outliers dataset to improve OOD detection. However, they may still face limitations in effectively distinguishing between the most challenging OOD samples that are much like in-distribution (ID) data, i.e., \idlike samples. To this end, we propose a novel OOD detection framework that discovers \idlike outliers using CLIP \cite{DBLP:conf/icml/RadfordKHRGASAM21} from the vicinity space of the ID samples, thus helping to identify these most challenging OOD samples. Then a prompt learning framework is proposed that utilizes the identified \idlike outliers to further leverage the capabilities of CLIP for OOD detection. Benefiting from the powerful CLIP, we only need a small number of ID samples to learn the prompts of the model without exposing other auxiliary outlier datasets. By focusing on the most challenging \idlike OOD samples and elegantly exploiting the capabilities of CLIP, our method achieves superior few-shot learning performance on various real-world image datasets (e.g., in 4-shot OOD detection on the ImageNet-1k dataset, our method reduces the average FPR95 by 12.16\% and improves the average AUROC by 2.76\%, compared to state-of-the-art methods). Code is available at https://github.com/ycfate/ID-like.
- Abstract(参考訳): アウト・オブ・ディストリビューション(OOD)検出法は、OODサンプルを識別するモデルをトレーニングするために補助的なアウトレイアを利用することが多く、特に補助的なアウトレイアデータセットからの挑戦的なアウトレイアを発見し、OOD検出を改善する。
しかし、これらのサンプルは、ID(In-distriion)データによく似ている最も難しいOODサンプル、すなわち、IDライクなサンプルを効果的に区別する際の制限に直面している可能性がある。
そこで本研究では,CLIP \cite{DBLP:conf/icml/RadfordKHRGASAM21} を用いた新しい OOD 検出フレームワークを提案する。
次に、識別された \idlike アウトリーチを利用して、OOD検出のための CLIP の機能をさらに活用するプロンプトラーニングフレームワークを提案する。
強力なCLIPから恩恵を受けるため、補助的な外れ値データセットを公開せずにモデルのプロンプトを学習するためには、少数のIDサンプルしか必要としない。
この手法は,最も難易度の高い \idlike OOD サンプルに着目し,CLIP の機能をエレガントに活用することにより,様々な実世界の画像データセット上でのより優れた少ショット学習性能を実現する(例:ImageNet-1k データセットでの4ショット OOD 検出では,平均 FPR95 を12.16 % 削減し,平均 AUROC を2.76 % 改善する)。
コードはhttps://github.com/ycfate/ID-likeで入手できる。
関連論文リスト
- Going Beyond Conventional OOD Detection [0.0]
アウト・オブ・ディストリビューション(OOD)検出は、重要なアプリケーションにディープラーニングモデルの安全なデプロイを保証するために重要である。
従来型OOD検出(ASCOOD)への統一的アプローチを提案する。
提案手法は, スパイラル相関の影響を効果的に軽減し, 微粒化特性の獲得を促す。
論文 参考訳(メタデータ) (2024-11-16T13:04:52Z) - Margin-bounded Confidence Scores for Out-of-Distribution Detection [2.373572816573706]
本稿では,非自明なOOD検出問題に対処するため,Margin bounded Confidence Scores (MaCS) と呼ばれる新しい手法を提案する。
MaCS は ID と OOD のスコアの差を拡大し、決定境界をよりコンパクトにする。
画像分類タスクのための様々なベンチマークデータセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-09-22T05:40:25Z) - Diffusion based Semantic Outlier Generation via Nuisance Awareness for Out-of-Distribution Detection [9.936136347796413]
アウト・オブ・ディストリビューション(OOD)検出は、最近、合成OODデータセットによるトレーニングを通じて有望な結果を示している。
本稿では, 難解な外乱を生じさせる新しいフレームワークであるセマンティック外乱生成手法(SONA)を提案する。
提案手法はSONAガイダンスを取り入れ,IDサンプルの意味領域とニュアンス領域を分離的に制御する。
論文 参考訳(メタデータ) (2024-08-27T07:52:44Z) - Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection [71.93411099797308]
オープンワールドシナリオに機械学習モデルをデプロイする場合、アウト・オブ・ディストリビューション(OOD)サンプルは不可欠である。
本稿では,大規模言語モデル(LLM)の専門知識と推論能力を活用して,この制約に対処することを提案する。
EOEは、遠、近、きめ細かいOOD検出など、さまざまなタスクに一般化することができる。
EOEは様々なOODタスクで最先端のパフォーマンスを実現し、ImageNet-1Kデータセットに効果的にスケールできる。
論文 参考訳(メタデータ) (2024-06-02T17:09:48Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
アウト・オブ・ディストリビューション(OOD)検出は、イン・ディストリビューション(ID)トレーニングプロセス中にラベルが見られない未知のデータを検出することを目的としている。
近年の表現学習の進歩により,距離に基づくOOD検出がもたらされる。
グローバルな視覚情報と局所的な情報の両方を活用する第1のフレームワークであるマルチスケールOOD検出(MODE)を提案する。
論文 参考訳(メタデータ) (2023-08-20T11:56:25Z) - Pseudo Outlier Exposure for Out-of-Distribution Detection using
Pretrained Transformers [3.8839179829686126]
拒否ネットワークは、テストOODサンプルを検出するために、IDと多様な外れ値サンプルで訓練することができる。
本稿では,Pseudo Outlier Exposure (POE) と呼ばれる手法を提案する。
本手法は外部OODデータを一切必要とせず,既製のトランスフォーマーで容易に実装できる。
論文 参考訳(メタデータ) (2023-07-18T17:29:23Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
簡単な再構築手法を用いることで,OOD検出の性能が大幅に向上する可能性が示唆された。
我々は、OOD検出フレームワーク(MOOD)のプリテキストタスクとして、マスケ画像モデリング(Masked Image Modeling)を採用する。
論文 参考訳(メタデータ) (2023-02-06T08:24:41Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
アウト・オブ・ディストリビューション(OOD)検出は、野生にデプロイされた機械学習モデルにとって重要である。
近年の手法では,OOD検出の改善のために補助外乱データを用いてモデルを正規化している。
我々は、自然にIDとOODの両方のサンプルで構成される野生の混合データを活用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T15:38:39Z) - Multi-Task Curriculum Framework for Open-Set Semi-Supervised Learning [54.85397562961903]
ラベル付きデータに制限がある場合に、ラベルなしデータを利用して強力なモデルをトレーニングする半教師付き学習(SSL)が提案されている。
我々は、Open-set SSLと呼ばれるより複雑な新しいシナリオに対処する。
提案手法は,OOD試料の効果を除去し,最先端の結果を得る。
論文 参考訳(メタデータ) (2020-07-22T10:33:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。