Eye Disease Prediction using Ensemble Learning and Attention on OCT
Scans
- URL: http://arxiv.org/abs/2311.15301v1
- Date: Sun, 26 Nov 2023 13:55:24 GMT
- Title: Eye Disease Prediction using Ensemble Learning and Attention on OCT
Scans
- Authors: Gauri Naik, Nandini Narvekar, Dimple Agarwal, Nishita Nandanwar,
Himangi Pande
- Abstract summary: We introduce an end to end web application that utilizes machine learning and deep learning techniques for efficient eye disease prediction.
The application allows patients to submit their raw OCT scanned images, which undergo segmentation using a trained custom UNet model.
The ensemble model's output is aggregated to predict and classify various eye diseases.
- Score: 2.5122414857278472
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Eye diseases have posed significant challenges for decades, but advancements
in technology have opened new avenues for their detection and treatment.
Machine learning and deep learning algorithms have become instrumental in this
domain, particularly when combined with Optical Coherent Technology (OCT)
imaging. We propose a novel method for efficient detection of eye diseases from
OCT images. Our technique enables the classification of patients into disease
free (normal eyes) or affected by specific conditions such as Choroidal
Neovascularization (CNV), Diabetic Macular Edema (DME), or Drusen. In this
work, we introduce an end to end web application that utilizes machine learning
and deep learning techniques for efficient eye disease prediction. The
application allows patients to submit their raw OCT scanned images, which
undergo segmentation using a trained custom UNet model. The segmented images
are then fed into an ensemble model, comprising InceptionV3 and Xception
networks, enhanced with a self attention layer. This self attention approach
leverages the feature maps of individual models to achieve improved
classification accuracy. The ensemble model's output is aggregated to predict
and classify various eye diseases. Extensive experimentation and optimization
have been conducted to ensure the application's efficiency and optimal
performance. Our results demonstrate the effectiveness of the proposed approach
in accurate eye disease prediction. The developed web application holds
significant potential for early detection and timely intervention, thereby
contributing to improved eye healthcare outcomes.
Related papers
- Enhancing Retinal Disease Classification from OCTA Images via Active Learning Techniques [0.8035416719640156]
Eye diseases are common in older Americans and can lead to decreased vision and blindness.
Recent advancements in imaging technologies allow clinicians to capture high-quality images of the retinal blood vessels via Optical Coherence Tomography Angiography ( OCTA)
OCTA provides detailed vascular imaging as compared to the solely structural information obtained by common OCT imaging.
arXiv Detail & Related papers (2024-07-21T23:24:49Z) - Harnessing the power of longitudinal medical imaging for eye disease prognosis using Transformer-based sequence modeling [49.52787013516891]
Our proposed Longitudinal Transformer for Survival Analysis (LTSA) enables dynamic disease prognosis from longitudinal medical imaging.
A temporal attention analysis also suggested that, while the most recent image is typically the most influential, prior imaging still provides additional prognostic value.
arXiv Detail & Related papers (2024-05-14T17:15:28Z) - Enhance Eye Disease Detection using Learnable Probabilistic Discrete Latents in Machine Learning Architectures [1.6000489723889526]
Ocular diseases, including diabetic retinopathy and glaucoma, present a significant public health challenge.
Deep learning models have emerged as powerful tools for analysing medical images, such as retina imaging.
Challenges persist in model relibability and uncertainty estimation, which are critical for clinical decision-making.
arXiv Detail & Related papers (2024-01-21T04:14:54Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Improving Classification of Retinal Fundus Image Using Flow Dynamics
Optimized Deep Learning Methods [0.0]
Diabetic Retinopathy (DR) refers to a barrier that takes place in diabetes mellitus damaging the blood vessel network present in the retina.
It can take some time to perform a DR diagnosis using color fundus pictures because experienced clinicians are required to identify the tumors in the imagery used to identify the illness.
arXiv Detail & Related papers (2023-04-29T16:11:34Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - ROCT-Net: A new ensemble deep convolutional model with improved spatial
resolution learning for detecting common diseases from retinal OCT images [0.0]
This paper presents a new enhanced deep ensemble convolutional neural network for detecting retinal diseases from OCT images.
Our model generates rich and multi-resolution features by employing the learning architectures of two robust convolutional models.
Our experiments on two datasets and comparing our model with some other well-known deep convolutional neural networks have proven that our architecture can increase the classification accuracy up to 5%.
arXiv Detail & Related papers (2022-03-03T17:51:01Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.