Enhance Eye Disease Detection using Learnable Probabilistic Discrete Latents in Machine Learning Architectures
- URL: http://arxiv.org/abs/2402.16865v2
- Date: Sun, 13 Oct 2024 05:35:18 GMT
- Title: Enhance Eye Disease Detection using Learnable Probabilistic Discrete Latents in Machine Learning Architectures
- Authors: Anirudh Prabhakaran, YeKun Xiao, Ching-Yu Cheng, Dianbo Liu,
- Abstract summary: Ocular diseases, including diabetic retinopathy and glaucoma, present a significant public health challenge.
Deep learning models have emerged as powerful tools for analysing medical images, such as retina imaging.
Challenges persist in model relibability and uncertainty estimation, which are critical for clinical decision-making.
- Score: 1.6000489723889526
- License:
- Abstract: Ocular diseases, including diabetic retinopathy and glaucoma, present a significant public health challenge due to their high prevalence and potential for causing vision impairment. Early and accurate diagnosis is crucial for effective treatment and management. In recent years, deep learning models have emerged as powerful tools for analysing medical images, such as retina imaging. However, challenges persist in model relibability and uncertainty estimation, which are critical for clinical decision-making. This study leverages the probabilistic framework of Generative Flow Networks (GFlowNets) to learn the posterior distribution over latent discrete dropout masks for the classification and analysis of ocular diseases using fundus images. We develop a robust and generalizable method that utilizes GFlowOut integrated with ResNet18 and ViT models as the backbone in identifying various ocular conditions. This study employs a unique set of dropout masks - none, random, bottomup, and topdown - to enhance model performance in analyzing these fundus images. Our results demonstrate that our learnable probablistic latents significantly improves accuracy, outperforming the traditional dropout approach. We utilize a gradient map calculation method, Grad-CAM, to assess model explainability, observing that the model accurately focuses on critical image regions for predictions. The integration of GFlowOut in neural networks presents a promising advancement in the automated diagnosis of ocular diseases, with implications for improving clinical workflows and patient outcomes.
Related papers
- Block Expanded DINORET: Adapting Natural Domain Foundation Models for Retinal Imaging Without Catastrophic Forgetting [1.2573191100165562]
We adapted the DINOv2 vision transformer for retinal imaging classification tasks using self-supervised learning.
We generated two novel foundation models termed DINORET and BE DINORET.
Our few-shot learning studies indicated that DINORET and BE DINORET outperform RETFound in terms of data-efficiency.
arXiv Detail & Related papers (2024-09-25T20:17:16Z) - Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
Distributed training can facilitate the processing of large medical image datasets, and improve the accuracy and efficiency of disease diagnosis.
This paper presents an innovative approach to medical image classification, leveraging Federated Learning (FL) to address the dual challenges of data privacy and efficient disease diagnosis.
arXiv Detail & Related papers (2024-04-15T09:07:19Z) - ROCT-Net: A new ensemble deep convolutional model with improved spatial
resolution learning for detecting common diseases from retinal OCT images [0.0]
This paper presents a new enhanced deep ensemble convolutional neural network for detecting retinal diseases from OCT images.
Our model generates rich and multi-resolution features by employing the learning architectures of two robust convolutional models.
Our experiments on two datasets and comparing our model with some other well-known deep convolutional neural networks have proven that our architecture can increase the classification accuracy up to 5%.
arXiv Detail & Related papers (2022-03-03T17:51:01Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - Multi-Disease Detection in Retinal Imaging based on Ensembling
Heterogeneous Deep Learning Models [0.0]
We propose an innovative multi-disease detection pipeline for retinal imaging.
Our pipeline includes state-of-the-art strategies like transfer learning, class weighting, real-time image augmentation and Focal loss utilization.
arXiv Detail & Related papers (2021-03-26T18:02:17Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Uncertainty aware and explainable diagnosis of retinal disease [0.0]
We perform uncertainty analysis of a deep learning model for diagnosis of four retinal diseases.
We show the features that a system used to make prediction while uncertainty awareness is the ability of a system to highlight when it is not sure about the decision.
arXiv Detail & Related papers (2021-01-26T23:37:30Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.