Noise robustness of a multiparty quantum summation protocol
- URL: http://arxiv.org/abs/2311.15314v2
- Date: Mon, 29 Apr 2024 11:34:50 GMT
- Title: Noise robustness of a multiparty quantum summation protocol
- Authors: Antón Rodríguez Otero, Niels M. P. Neumann, Ward van der Schoot, Robert Wezeman,
- Abstract summary: Near-term quantum networks are noisy, and hence correctness and security of protocols are not guaranteed.
We study the impact of both depolarising and dephasing noise on a multiparty summation protocol with imperfect shared entangled states.
We conclude by eliminating the need for a trusted third party in the protocol using Shamir's secret sharing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Connecting quantum computers to a quantum network opens a wide array of new applications, such as securely performing computations on distributed data sets. Near-term quantum networks are noisy, however, and hence correctness and security of protocols are not guaranteed. To study the impact of noise, we consider a multiparty summation protocol with imperfect shared entangled states. We study analytically the impact of both depolarising and dephasing noise on this protocol and the noise patterns arising in the probability distributions. We conclude by eliminating the need for a trusted third party in the protocol using Shamir's secret sharing.
Related papers
- Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - General treatment of Gaussian trusted noise in continuous variable
quantum key distribution [1.0499611180329804]
A trusted device scenario assumes that an adversary has no access to imperfections such as electronic noises in the detector is expected to provide significant improvement in the key rate.
Here, we develop a simple and general treatment that can incorporate the effects of Gaussian trusted noises for any protocol that uses homodyne/heterodyne measurements.
In our method, a rescaling of the outcome of a noisy homodyne/heterodyne detector renders it equivalent to the outcome of a noiseless detector with a tiny additional loss.
arXiv Detail & Related papers (2023-05-28T10:38:36Z) - Semi-device independent nonlocality certification for near-term quantum
networks [46.37108901286964]
Bell tests are the most rigorous method for verifying entanglement in quantum networks.
If there is any signaling between the parties, then the violation of Bell inequalities can no longer be used.
We propose a semi-device independent protocol that allows us to numerically correct for effects of correlations in experimental probability distributions.
arXiv Detail & Related papers (2023-05-23T14:39:08Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Scalable Mediated Semi-quantum Key Distribution [5.548873288570182]
Mediated semi-quantum key distribution (M-SQKD) permits two limited "semi-quantum" or "classical" users to establish a secret key with the help of a third party (TP)
Several protocols have been studied recently for two-party scenarios, but no one has considered M-SQKD for multi-party scenarios.
arXiv Detail & Related papers (2022-05-13T09:21:12Z) - Multi-party Semi-quantum Secret Sharing Protocol based on Measure-flip and Reflect Operations [1.3812010983144802]
Semi-quantum secret sharing (SQSS) protocols serve as fundamental frameworks in quantum secure multi-party computations.
This paper proposes a novel SQSS protocol based on multi-particle GHZ states.
arXiv Detail & Related papers (2021-09-03T08:52:17Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Bell nonlocality is not sufficient for the security of standard
device-independent quantum key distribution protocols [1.9573380763700712]
Device-independent quantum key distribution is a secure quantum cryptographic paradigm that allows two honest users to establish a secret key.
We show that no protocol of this form allows for establishing a secret key when implemented on any correlation obtained by measuring local projective measurements.
arXiv Detail & Related papers (2021-03-03T19:10:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.