論文の概要: Confidence Is All You Need for MI Attacks
- arxiv url: http://arxiv.org/abs/2311.15373v2
- Date: Wed, 19 Jun 2024 18:58:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 06:17:50.347128
- Title: Confidence Is All You Need for MI Attacks
- Title(参考訳): MI攻撃に必要なのは信頼だけ
- Authors: Abhishek Sinha, Himanshi Tibrewal, Mansi Gupta, Nikhar Waghela, Shivank Garg,
- Abstract要約: モデルのトレーニングセットにおけるデータポイントのメンバシップを計測する新しい手法を提案する。
トレーニング中、モデルは基本的にトレーニングデータに'適合'しており、目に見えないデータへの一般化において特に困難に直面している可能性がある。
- 参考スコア(独自算出の注目度): 7.743155804758186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this evolving era of machine learning security, membership inference attacks have emerged as a potent threat to the confidentiality of sensitive data. In this attack, adversaries aim to determine whether a particular point was used during the training of a target model. This paper proposes a new method to gauge a data point's membership in a model's training set. Instead of correlating loss with membership, as is traditionally done, we have leveraged the fact that training examples generally exhibit higher confidence values when classified into their actual class. During training, the model is essentially being 'fit' to the training data and might face particular difficulties in generalization to unseen data. This asymmetry leads to the model achieving higher confidence on the training data as it exploits the specific patterns and noise present in the training data. Our proposed approach leverages the confidence values generated by the machine learning model. These confidence values provide a probabilistic measure of the model's certainty in its predictions and can further be used to infer the membership of a given data point. Additionally, we also introduce another variant of our method that allows us to carry out this attack without knowing the ground truth(true class) of a given data point, thus offering an edge over existing label-dependent attack methods.
- Abstract(参考訳): 機械学習のセキュリティの進化期において、機密データの機密性に対する強力な脅威としてメンバーシップ推論攻撃が出現した。
この攻撃では、敵はターゲットモデルのトレーニング中に特定のポイントが使用されたかどうかを判定することを目的としている。
本稿では,モデルのトレーニングセットにおけるデータポイントのメンバシップを計測する新しい手法を提案する。
伝統的に行われているように、メンバシップの損失と相関する代わりに、トレーニング例が実際のクラスに分類された場合、一般的に高い信頼度を示すという事実を活用している。
トレーニング中、モデルは基本的にトレーニングデータに'適合'しており、目に見えないデータへの一般化において特に困難に直面している可能性がある。
この非対称性は、トレーニングデータに存在する特定のパターンやノイズを利用するため、トレーニングデータに対する信頼性を高めるモデルにつながる。
提案手法は,機械学習モデルによって生成された信頼性値を利用する。
これらの信頼値は、その予測におけるモデルの確かさの確率的測度を提供し、与えられたデータポイントのメンバシップを推測するのにさらに使用できる。
さらに、与えられたデータポイントの基底的真理(真理クラス)を知らずにこの攻撃を実行できる方法の別の変種を導入し、既存のラベルに依存した攻撃方法に対するエッジを提供する。
関連論文リスト
- Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - FullCert: Deterministic End-to-End Certification for Training and Inference of Neural Networks [62.897993591443594]
FullCertは、音と決定論的境界を持つ最初のエンドツーエンドの認証器である。
2つのデータセットに対してFullCertの有効性を実験的に示す。
論文 参考訳(メタデータ) (2024-06-17T13:23:52Z) - Better Membership Inference Privacy Measurement through Discrepancy [25.48677069802298]
本稿では,新たな経験的プライバシ指標を提案する。
我々は,この指標が複数のモデルのトレーニングを伴わず,大規模なイメージネット分類モデルに適用可能であることを示し,より最新で洗練されたトレーニングレシピでトレーニングされたモデルの既存の指標よりも有利であることを示した。
論文 参考訳(メタデータ) (2024-05-24T01:33:22Z) - Learning to Unlearn: Instance-wise Unlearning for Pre-trained
Classifiers [71.70205894168039]
そこでは、事前訓練されたモデルからインスタンスのセットに関する情報を削除することを目標としています。
本稿では,1)表現レベルでの忘れを克服するために,敵の例を活用すること,2)不必要な情報を伝播するネットワークパラメータをピンポイントする重み付け指標を活用すること,の2つの方法を提案する。
論文 参考訳(メタデータ) (2023-01-27T07:53:50Z) - Evaluating Membership Inference Through Adversarial Robustness [6.983991370116041]
本稿では,敵の強靭性に基づくメンバシップ推論攻撃の強化手法を提案する。
提案手法をFashion-MNIST, CIFAR-10, CIFAR-100の3つのデータセットで評価した。
論文 参考訳(メタデータ) (2022-05-14T06:48:47Z) - Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets [53.866927712193416]
トレーニングデータセットを有害にすることができる敵が、このデータセットでトレーニングされたモデルに、他の当事者のプライベート詳細を漏洩させる可能性があることを示す。
私たちの攻撃は、メンバーシップ推論、属性推論、データ抽出に効果的です。
私たちの結果は、機械学習のためのマルチパーティプロトコルにおける暗号化プライバシ保証の関連性に疑問を投げかけました。
論文 参考訳(メタデータ) (2022-03-31T18:06:28Z) - One Parameter Defense -- Defending against Data Inference Attacks via
Differential Privacy [26.000487178636927]
機械学習モデルは、メンバシップ推論やモデル反転攻撃のようなデータ推論攻撃に弱い。
既存の防衛方法は、メンバーシップ推論攻撃からのみ保護する。
両攻撃を時間効率で処理する差分プライベートディフェンス法を提案する。
論文 参考訳(メタデータ) (2022-03-13T06:06:24Z) - Enhanced Membership Inference Attacks against Machine Learning Models [9.26208227402571]
メンバーシップ推論攻撃は、モデルがトレーニングセット内の個々のデータポイントについてリークする個人情報の定量化に使用される。
我々は,AUCスコアを高い精度で達成できる新たな攻撃アルゴリズムを導き,その性能に影響を及ぼすさまざまな要因を強調した。
我々のアルゴリズムは、モデルにおけるプライバシ損失の極めて正確な近似を捉え、機械学習モデルにおけるプライバシリスクの正確かつ詳細な推定を行うためのツールとして使用することができる。
論文 参考訳(メタデータ) (2021-11-18T13:31:22Z) - Delving into Data: Effectively Substitute Training for Black-box Attack [84.85798059317963]
本稿では,知識盗むプロセスで使用されるデータの分散設計に焦点をあてた,新しい視点代替トレーニングを提案する。
これら2つのモジュールの組み合わせにより、代替モデルとターゲットモデルの一貫性がさらに向上し、敵攻撃の有効性が大幅に向上する。
論文 参考訳(メタデータ) (2021-04-26T07:26:29Z) - How Does Data Augmentation Affect Privacy in Machine Learning? [94.52721115660626]
拡張データの情報を活用するために,新たなMI攻撃を提案する。
モデルが拡張データで訓練された場合、最適な会員推定値を確立する。
論文 参考訳(メタデータ) (2020-07-21T02:21:10Z) - Trade-offs between membership privacy & adversarially robust learning [13.37805637358556]
標準モデルがロバストモデルよりもはるかに過度に適合する設定を特定します。
オーバーフィッティングの度合いは、トレーニングに利用可能なデータの量に依存する。
論文 参考訳(メタデータ) (2020-06-08T14:20:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。