The influence of pinholes and weak-points in aluminium-oxide Josephson
junctions
- URL: http://arxiv.org/abs/2311.15560v2
- Date: Thu, 29 Feb 2024 05:24:56 GMT
- Title: The influence of pinholes and weak-points in aluminium-oxide Josephson
junctions
- Authors: K. Bayros, M. J. Cyster, J. S. Smith, J. H. Cole
- Abstract summary: Josephson junctions are the key components used in superconducting qubits for quantum computing.
Pinholes in the junction have been suggested as one of the possible contributors to these instabilities.
We use molecular dynamics to create three-dimensional atomistic models to describe Al-AlOx-Al tunnel junctions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Josephson junctions are the key components used in superconducting qubits for
quantum computing. The advancement of quantum computing is limited by a lack of
stability and reproducibility of qubits which ultimately originates in the
amorphous tunnel barrier of the Josephson junctions and other material
imperfections. Pinholes in the junction have been suggested as one of the
possible contributors to these instabilities, but evidence of their existence
and the effect they might have on transport is unclear. We use molecular
dynamics to create three-dimensional atomistic models to describe Al-AlOx-Al
tunnel junctions, showing that pinholes form when oxidation of the barrier is
incomplete. Following this we use the atomistic model and simulate the
electronic transport properties for tunnel junctions with different barrier
thicknesses using the non-equilibrium Green's function formalism. We observe
that pinholes may contribute to excess quasiparticle current flow in Al-AlOx-Al
tunnel junctions with thinner barriers, and in thicker barriers we observe
weak-points which facilitate leakage currents even when the oxide is
continuous. We find that the disordered nature of the amorphous barrier results
in significant variations in the transport properties. Additionally, we
determine the current-phase relationship for our atomistic structures,
confirming that devices with pinholes and weak-points cause a deviation from
the ideal sinusoidal Josephson relationship.
Related papers
- Probing Site-Resolved Current in Strongly Interacting Superconducting Circuit Lattices [0.0]
Transport measurements are fundamental for understanding condensed matter phenomena, from superconductivity to the fractional quantum Hall effect.
Here we demonstrate the measurement of in-situ particle current in a superconducting circuit lattice and apply it to study transport in both coherent and bath-coupled lattices.
arXiv Detail & Related papers (2024-03-18T17:08:04Z) - Electron Transport Through a 1D Chain of Dopant-Based Quantum Dots [0.0]
The Fermi-Hubbard model is the prototypical model used to study quantum many-body systems.
Recent research has shown that the extended Fermi-Hubbard model is more accurate.
This research will lead to a better understanding of electron behavior in silicon-doped semiconductors.
arXiv Detail & Related papers (2024-02-06T16:41:59Z) - Observation of Josephson Harmonics in Tunnel Junctions [0.9181311783131562]
State-of-the-art superconducting qubits employ aluminum oxide (AlO$_x$) tunnel Josephson junctions.
We show that the standard current-phase relation fails to accurately describe the energy spectra of transmon artificial atoms.
arXiv Detail & Related papers (2023-02-17T23:52:55Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Josephson-like oscillations in toroidal spinor Bose-Einstein
condensates: a prospective symmetry probe [0.0]
We present an intriguing effect caused by a thin finite barrier in a quasi-one-dimensional toroidal spinor Bose--Einstein condensate (BEC)
In this system, the atomic current density flowing through the edges of the barrier oscillates, such as the electrical current through a Josephson junction in a superconductor.
We also show how the nontrivial broken-symmetry states of spinor BECs change the structure of this Josephson-like current, creating the possibility to probe the spinor symmetry.
arXiv Detail & Related papers (2022-04-17T04:54:11Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Probing defect densities at the edges and inside Josephson junctions of
superconducting qubits [58.720142291102135]
Tunneling defects in disordered materials form spurious two-level systems.
For superconducting qubits, defects in tunnel barriers of submicrometer-sized Josephson junctions couple strongest to the qubit.
We investigate whether defects appear predominantly at the edges or deep within the amorphous tunnel barrier of a junction.
arXiv Detail & Related papers (2021-08-14T15:01:35Z) - Quasiparticle tunneling as a probe of Josephson junction barrier and
capacitor material in superconducting qubits [2.6549320605996862]
Non-equilibrium quasiparticles are possible sources for decoherence in superconducting qubits because they can lead to energy decay or dephasing upon tunneling across Josephson junctions (JJs)
Here, we investigate the impact of the intrinsic properties of two-dimensional transmon qubits on quasiparticle tunneling (QPT)
We find the tunneling rate of the nonequilibrium quasiparticles to be sensitive to the choice of the shunting capacitor material and their geometry in qubits.
arXiv Detail & Related papers (2021-06-22T02:33:59Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.