Towards Difficulty-Agnostic Efficient Transfer Learning for Vision-Language Models
- URL: http://arxiv.org/abs/2311.15569v2
- Date: Fri, 11 Oct 2024 06:23:09 GMT
- Title: Towards Difficulty-Agnostic Efficient Transfer Learning for Vision-Language Models
- Authors: Yongjin Yang, Jongwoo Ko, Se-Young Yun,
- Abstract summary: In this paper, we empirically analyze how each method behaves with respect to transfer difficulty.
We propose an adaptive ensemble method that combines visual prompts and text adapters with pre-trained VLMs.
- Score: 28.057588125823266
- License:
- Abstract: Vision-language models (VLMs) like CLIP have demonstrated remarkable applicability across a variety of downstream tasks, including zero-shot image classification. Recently, the use of prompts or adapters for efficient transfer learning (ETL) has gained significant attention for effectively adapting to downstream tasks. However, previous studies have overlooked the challenge of varying transfer difficulty of downstream tasks. In this paper, we empirically analyze how each ETL method behaves with respect to transfer difficulty. Our observations indicate that utilizing vision prompts and text adapters is crucial for adaptability and generalizability in domains with high difficulty. Also, by applying an adaptive ensemble approach that integrates task-adapted VLMs with pre-trained VLMs and strategically leverages more general knowledge in low-difficulty and less in high-difficulty domains, we consistently enhance performance across both types of domains. Based on these observations, we propose an adaptive ensemble method that combines visual prompts and text adapters with pre-trained VLMs, tailored by transfer difficulty, to achieve optimal performance for any target domain. Upon experimenting with extensive benchmarks, our method consistently outperforms all baselines, particularly on unseen tasks, demonstrating its effectiveness.
Related papers
- Efficient Policy Adaptation with Contrastive Prompt Ensemble for Embodied Agents [6.402396836189286]
We present a novel contrastive prompt ensemble (ConPE) framework for embodied reinforcement learning.
We devise a guided-attention-based ensemble approach with multiple visual prompts on the vision-language model to construct robust state representations.
In experiments, we show that ConPE outperforms other state-of-the-art algorithms for several embodied agent tasks.
arXiv Detail & Related papers (2024-12-16T06:53:00Z) - Active Prompt Learning with Vision-Language Model Priors [9.173468790066956]
We introduce a class-guided clustering that leverages the pre-trained image and text encoders of vision-language models.
We propose a budget-saving selective querying based on adaptive class-wise thresholds.
arXiv Detail & Related papers (2024-11-23T02:34:33Z) - Visual Cue Enhancement and Dual Low-Rank Adaptation for Efficient Visual Instruction Fine-Tuning [102.18178065928426]
We propose an efficient fine-tuning framework with two novel approaches: Vision Cue Enhancement (VCE) and Dual Low-Rank Adaptation (Dual-LoRA)
VCE enhances the vision projector by integrating multi-level visual cues, improving the model's ability to capture fine-grained visual features.
Dual-LoRA introduces a dual low-rank structure for instruction tuning, decoupling learning into skill and task spaces to enable precise control and efficient adaptation across diverse tasks.
arXiv Detail & Related papers (2024-11-19T11:03:09Z) - Fully Fine-tuned CLIP Models are Efficient Few-Shot Learners [8.707819647492467]
We explore capturing the task-specific information via meticulous refinement of entire Vision-Language Models (VLMs)
To mitigate these issues, we propose a framework named CLIP-CITE via designing a discriminative visual-text task.
arXiv Detail & Related papers (2024-07-04T15:22:54Z) - Low-Rank Few-Shot Adaptation of Vision-Language Models [13.803180972839213]
We introduce Low-Rank Adaptation (LoRA) in few-shot learning for Vision-Language Models (VLMs)
Surprisingly, our simple CLIP-LoRA method exhibits substantial improvements, while reducing the training times.
Our results do not dismiss the potential of prompt-learning and adapter-based research.
arXiv Detail & Related papers (2024-05-28T19:16:59Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - APLe: Token-Wise Adaptive for Multi-Modal Prompt Learning [15.844451999840588]
We propose Token-wise Adaptive for Multi-modal Prompt Learning (APLe) for tuning both modalities prompts, vision and language, as tokens in a sequential manner.
APLe shows robustness and favourable performance in prompt-length experiments with an absolute advantage in adopting the V-L models.
arXiv Detail & Related papers (2024-01-12T04:54:01Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
Current meta-learning algorithms require a large number of meta-training tasks, which may not be accessible in real-world scenarios.
By meta-learning with task gradient (MLTI), our approach effectively generates additional tasks by randomly sampling a pair of tasks and interpolating the corresponding features and labels.
Empirically, in our experiments on eight datasets from diverse domains, we find that the proposed general MLTI framework is compatible with representative meta-learning algorithms and consistently outperforms other state-of-the-art strategies.
arXiv Detail & Related papers (2021-06-04T20:15:34Z) - Learning Invariant Representations across Domains and Tasks [81.30046935430791]
We propose a novel Task Adaptation Network (TAN) to solve this unsupervised task transfer problem.
In addition to learning transferable features via domain-adversarial training, we propose a novel task semantic adaptor that uses the learning-to-learn strategy to adapt the task semantics.
TAN significantly increases the recall and F1 score by 5.0% and 7.8% compared to recently strong baselines.
arXiv Detail & Related papers (2021-03-03T11:18:43Z) - Uniform Priors for Data-Efficient Transfer [65.086680950871]
We show that features that are most transferable have high uniformity in the embedding space.
We evaluate the regularization on its ability to facilitate adaptation to unseen tasks and data.
arXiv Detail & Related papers (2020-06-30T04:39:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.