Bayesian Approach to Linear Bayesian Networks
- URL: http://arxiv.org/abs/2311.15610v1
- Date: Mon, 27 Nov 2023 08:10:53 GMT
- Title: Bayesian Approach to Linear Bayesian Networks
- Authors: Seyong Hwang, Kyoungjae Lee, Sunmin Oh, Gunwoong Park
- Abstract summary: The proposed approach iteratively estimates each element of the topological ordering from backward and its parent using the inverse of a partial covariance matrix.
The proposed method is demonstrated to outperform state-of-the-art frequentist approaches, such as the BHLSM, LISTEN, and TD algorithms in synthetic data.
- Score: 3.8711489380602804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposes the first Bayesian approach for learning high-dimensional
linear Bayesian networks. The proposed approach iteratively estimates each
element of the topological ordering from backward and its parent using the
inverse of a partial covariance matrix. The proposed method successfully
recovers the underlying structure when Bayesian regularization for the inverse
covariance matrix with unequal shrinkage is applied. Specifically, it shows
that the number of samples $n = \Omega( d_M^2 \log p)$ and $n = \Omega(d_M^2
p^{2/m})$ are sufficient for the proposed algorithm to learn linear Bayesian
networks with sub-Gaussian and 4m-th bounded-moment error distributions,
respectively, where $p$ is the number of nodes and $d_M$ is the maximum degree
of the moralized graph. The theoretical findings are supported by extensive
simulation studies including real data analysis. Furthermore the proposed
method is demonstrated to outperform state-of-the-art frequentist approaches,
such as the BHLSM, LISTEN, and TD algorithms in synthetic data.
Related papers
- Low-rank Bayesian matrix completion via geodesic Hamiltonian Monte Carlo on Stiefel manifolds [0.18416014644193066]
We present a new sampling-based approach for enabling efficient computation of low-rank Bayesian matrix completion.
We show that our approach resolves the sampling difficulties encountered by standard Gibbs samplers for the common two-matrix factorization used in matrix completion.
Numerical examples demonstrate superior sampling performance, including better mixing and faster convergence to a stationary distribution.
arXiv Detail & Related papers (2024-10-27T03:12:53Z) - Riemannian Optimization for Non-convex Euclidean Distance Geometry with Global Recovery Guarantees [6.422262171968397]
Two algorithms are proposed to solve the Euclidean Distance Geometry problem.
First algorithm converges linearly to the true solution.
Second algorithm demonstrates strong numerical performance on both synthetic and real data.
arXiv Detail & Related papers (2024-10-08T21:19:22Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Dynamical System Identification, Model Selection and Model Uncertainty Quantification by Bayesian Inference [0.8388591755871735]
This study presents a Bayesian maximum textitaposteriori (MAP) framework for dynamical system identification from time-series data.
arXiv Detail & Related papers (2024-01-30T12:16:52Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
Algorithm unfolding creates an interpretable and parsimonious neural network architecture by implementing each iteration of a model-based algorithm as a neural layer.
In this paper, leveraging a recent linear algebraic theorem called Gershgorin disc perfect alignment (GDPA), we unroll a projection-free algorithm for semi-definite programming relaxation (SDR) of a binary graph.
Experimental results show that our unrolled network outperformed pure model-based graph classifiers, and achieved comparable performance to pure data-driven networks but using far fewer parameters.
arXiv Detail & Related papers (2021-09-10T07:01:15Z) - Towards Sample-Optimal Compressive Phase Retrieval with Sparse and
Generative Priors [59.33977545294148]
We show that $O(k log L)$ samples suffice to guarantee that the signal is close to any vector that minimizes an amplitude-based empirical loss function.
We adapt this result to sparse phase retrieval, and show that $O(s log n)$ samples are sufficient for a similar guarantee when the underlying signal is $s$-sparse and $n$-dimensional.
arXiv Detail & Related papers (2021-06-29T12:49:54Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Distributed Variational Bayesian Algorithms Over Sensor Networks [6.572330981878818]
We propose two novel distributed VB algorithms for general Bayesian inference problem.
The proposed algorithms have excellent performance, which are almost as good as the corresponding centralized VB algorithm relying on all data available in a fusion center.
arXiv Detail & Related papers (2020-11-27T08:12:18Z) - Linear-Sample Learning of Low-Rank Distributions [56.59844655107251]
We show that learning $ktimes k$, rank-$r$, matrices to normalized $L_1$ distance requires $Omega(frackrepsilon2)$ samples.
We propose an algorithm that uses $cal O(frackrepsilon2log2fracepsilon)$ samples, a number linear in the high dimension, and nearly linear in the matrices, typically low, rank proofs.
arXiv Detail & Related papers (2020-09-30T19:10:32Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z) - Tractable Approximate Gaussian Inference for Bayesian Neural Networks [1.933681537640272]
We propose an analytical method for performing tractable approximate Gaussian inference (TAGI) in Bayesian neural networks.
The method has a computational complexity of $mathcalO(n)$ with respect to the number of parameters $n$, and the tests performed on regression and classification benchmarks confirm that, for a same network architecture, it matches the performance of existing methods relying on gradient backpropagation.
arXiv Detail & Related papers (2020-04-20T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.