Efficiently Solving Discounted MDPs with Predictions on Transition Matrices
- URL: http://arxiv.org/abs/2502.15345v1
- Date: Fri, 21 Feb 2025 09:59:46 GMT
- Title: Efficiently Solving Discounted MDPs with Predictions on Transition Matrices
- Authors: Lixing Lyu, Jiashuo Jiang, Wang Chi Cheung,
- Abstract summary: We study Discounted Markov Decision Processes (DMDPs) under a generative model.<n>We propose a novel framework to investigate how a prediction on the transition matrix can enhance the sample efficiency in solving DMDPs.
- Score: 6.199300239433395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study infinite-horizon Discounted Markov Decision Processes (DMDPs) under a generative model. Motivated by the Algorithm with Advice framework Mitzenmacher and Vassilvitskii 2022, we propose a novel framework to investigate how a prediction on the transition matrix can enhance the sample efficiency in solving DMDPs and improve sample complexity bounds. We focus on the DMDPs with $N$ state-action pairs and discounted factor $\gamma$. Firstly, we provide an impossibility result that, without prior knowledge of the prediction accuracy, no sampling policy can compute an $\epsilon$-optimal policy with a sample complexity bound better than $\tilde{O}((1-\gamma)^{-3} N\epsilon^{-2})$, which matches the state-of-the-art minimax sample complexity bound with no prediction. In complement, we propose an algorithm based on minimax optimization techniques that leverages the prediction on the transition matrix. Our algorithm achieves a sample complexity bound depending on the prediction error, and the bound is uniformly better than $\tilde{O}((1-\gamma)^{-4} N \epsilon^{-2})$, the previous best result derived from convex optimization methods. These theoretical findings are further supported by our numerical experiments.
Related papers
- The Plug-in Approach for Average-Reward and Discounted MDPs: Optimal Sample Complexity Analysis [6.996002801232415]
We study the sample complexity of the plug-in approach for learning $varepsilon$-optimal policies in average-reward Markov decision processes.<n>Despite representing arguably the simplest algorithm for this problem, the plug-in approach has never been theoretically analyzed.
arXiv Detail & Related papers (2024-10-10T05:08:14Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Stochastic regularized majorization-minimization with weakly convex and
multi-convex surrogates [0.0]
We show that the first optimality gap of the proposed algorithm decays at the rate of the expected loss for various methods under nontens dependent data setting.
We obtain first convergence point for various methods under nontens dependent data setting.
arXiv Detail & Related papers (2022-01-05T15:17:35Z) - A stochastic linearized proximal method of multipliers for convex
stochastic optimization with expectation constraints [8.133190610747974]
We present a computable approximation type algorithm, namely the linearized proximal convex method of multipliers.
Some preliminary numerical results demonstrate the performance of the proposed algorithm.
arXiv Detail & Related papers (2021-06-22T07:24:17Z) - Towards Tight Bounds on the Sample Complexity of Average-reward MDPs [39.01663172393174]
We find an optimal policy of an infinite-horizon average-reward Markov decision process given access to a generative model.
We provide an algorithm that solves the problem using $widetildeO(t_mathrmmix epsilon-3)$ (oblivious) samples per state-action pair.
arXiv Detail & Related papers (2021-06-13T17:18:11Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
This paper is concerned with the sample efficiency of reinforcement learning, assuming access to a generative model (or simulator)
We first consider $gamma$-discounted infinite-horizon Markov decision processes (MDPs) with state space $mathcalS$ and action space $mathcalA$.
We prove that a plain model-based planning algorithm suffices to achieve minimax-optimal sample complexity given any target accuracy level.
arXiv Detail & Related papers (2020-05-26T17:53:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.