Analysis of spin-squeezing generation in cavity-coupled atomic ensembles with continuous measurements
- URL: http://arxiv.org/abs/2311.15725v3
- Date: Wed, 29 May 2024 08:03:00 GMT
- Title: Analysis of spin-squeezing generation in cavity-coupled atomic ensembles with continuous measurements
- Authors: A. Caprotti, M. Barbiero, M. G. Tarallo, M. G. Genoni, G. Bertaina,
- Abstract summary: We show that one can achieve significant spin squeezing, favorably scaling with the number of atoms $N$.
We discuss the relevance of this spin-squeezing protocol to state-of-the-art optical clocks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the generation of spin-squeezed states via coupling of three-level atoms to an optical cavity and continuous quantum measurement of the transmitted cavity field in order to monitor the evolution of the atomic ensemble. Using analytical treatment and microscopic simulations of the dynamics, we show that one can achieve significant spin squeezing, favorably scaling with the number of atoms $N$. However, contrary to some previous literature, we clarify that it is not possible to obtain Heisenberg scaling without the continuous feedback that is proposed in optimal approaches. In fact, in the adiabatic cavity removal approximation and large $N$ limit, we find the scaling behavior $N^{-2/3}$ for spin squeezing and $N^{-1/3}$ for the corresponding protocol duration. These results can be obtained only by considering the curvature of the Bloch sphere, since linearizing the collective spin operators tangentially to its equator yields inaccurate predictions. With full simulations, we characterize how spin-squeezing generation depends on the system parameters and departs from the bad cavity regime, by gradually mixing with cavity-filling dynamics until metrological advantage is lost. Finally, we discuss the relevance of this spin-squeezing protocol to state-of-the-art optical clocks.
Related papers
- Super-Heisenberg scaling of the quantum Fisher information using spin-motion states [0.0]
We propose a spin-motion state for high-precision quantum metrology using a trapped ion system.
We show that the adiabatic evolution creates a spin-squeezed state, which reduces the quantum projective noise to a sub-shot noise limit.
arXiv Detail & Related papers (2024-11-15T11:33:03Z) - Tripartite entanglement from experimental data: $B^0\to K^{*0}μ^+μ^-$ as a case study [49.1574468325115]
We develop an angular analysis based on the reconstruction of the helicity amplitudes from dedicated experimental data corresponding to the tripartite state composed by one qutrit and two qubits.
As an application of our analysis, we performed a full quantum tomography of the final state in the $B0to K*0mu+mu-$ decays using data recorded by LHCb collaboration.
arXiv Detail & Related papers (2024-09-19T18:10:14Z) - Ambiguous Resonances in Multipulse Quantum Sensing with Nitrogen Vacancy Centers [0.2686836573610359]
We experimentally characterized three of these effects present in single nitrogen vacancy centers in diamond.
We also developed a numerical simulations model without rotating wave approximation, showing robust correlation to the experimental data.
Although focused with nitrogen vacancy centers and dynamical decoupling sequences, these results and the developed model can potentially be applied to other solid state spins and quantum sensing techniques.
arXiv Detail & Related papers (2024-07-12T16:35:36Z) - Spin squeezing generated by the anisotropic central spin model [0.28101605533398166]
We investigate the spin squeezing and the quantum phase transition in an anisotropic central spin system.
We find that this kind of central spin systems can be mapped to the anisotropic Lipkin-Meshkov-Glick model in the limit where the ratio of transition between the central spin and the spin bath tends towards infinity.
This work offers a promising scheme for generating spin-squeezed state and paves the way for potential advancements in quantum sensing.
arXiv Detail & Related papers (2023-11-19T12:11:56Z) - Cyclic nonlinear interferometry with entangled non-Gaussian spin states [16.664397200920767]
We propose an efficient nonlinear readout scheme for entangled non-Gaussian spin states (ENGSs)
We focus on two well-known spin models of twist-and-turn (TNT) and two-axis-counter-twisting (TACT), where ENGS can be generated by spin dynamics starting from unstable fixed points.
arXiv Detail & Related papers (2023-04-18T09:59:17Z) - Birth-death dynamics for sampling: Global convergence, approximations
and their asymptotics [9.011881058913184]
We build a practical numerical system based on the pure-death dynamics.
We show that the kernelized dynamics converge on finite time intervals, to pure gradient-death dynamics shrinks to zero.
Finally we prove the long-time results on the convergence of the states of the kernelized dynamics towards the Gibbs measure.
arXiv Detail & Related papers (2022-11-01T13:30:26Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Quantum probes for the characterization of nonlinear media [50.591267188664666]
We investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tildelambda$ and of the nonlinearity order $zeta$.
We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
arXiv Detail & Related papers (2021-09-16T15:40:36Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.