FLASC: A Flare-Sensitive Clustering Algorithm: Extending HDBSCAN* for
Detecting Branches in Clusters
- URL: http://arxiv.org/abs/2311.15887v1
- Date: Mon, 27 Nov 2023 14:55:16 GMT
- Title: FLASC: A Flare-Sensitive Clustering Algorithm: Extending HDBSCAN* for
Detecting Branches in Clusters
- Authors: D. M. Bot, J. Peeters, J. Liesenborgs, J. Aerts
- Abstract summary: We present FLASC, an algorithm for flare-sensitive clustering.
Two variants of the algorithm are presented, which trade computational cost for noise robustness.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present FLASC, an algorithm for flare-sensitive clustering. Our algorithm
builds upon HDBSCAN* -- which provides high-quality density-based clustering
performance -- through a post-processing step that differentiates branches
within the detected clusters' manifold, adding a type of pattern that can be
discovered. Two variants of the algorithm are presented, which trade
computational cost for noise robustness. We show that both variants scale
similarly to HDBSCAN* in terms of computational cost and provide stable outputs
using synthetic data sets, resulting in an efficient flare-sensitive clustering
algorithm. In addition, we demonstrate the algorithm's benefit in data
exploration over HDBSCAN* clustering on two real-world data sets.
Related papers
- A Modular Spatial Clustering Algorithm with Noise Specification [0.0]
Bacteria-Farm algorithm is inspired by the growth of bacteria in closed experimental farms.
In contrast with other clustering algorithms, our algorithm also has a provision to specify the amount of noise to be excluded during clustering.
arXiv Detail & Related papers (2023-09-18T18:05:06Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - Fast conformational clustering of extensive molecular dynamics
simulation data [19.444636864515726]
We present an unsupervised data processing workflow that is specifically designed to obtain a fast conformational clustering of long trajectories.
We combine two dimensionality reduction algorithms (cc_analysis and encodermap) with a density-based spatial clustering algorithm (HDBSCAN)
With the help of four test systems we illustrate the capability and performance of this clustering workflow.
arXiv Detail & Related papers (2023-01-11T14:36:43Z) - SSDBCODI: Semi-Supervised Density-Based Clustering with Outliers
Detection Integrated [1.8444322599555096]
Clustering analysis is one of the critical tasks in machine learning.
Due to the fact that the performance of clustering clustering can be significantly eroded by outliers, algorithms try to incorporate the process of outlier detection.
We have proposed SSDBCODI, a semi-supervised detection element.
arXiv Detail & Related papers (2022-08-10T21:06:38Z) - Skew-Symmetric Adjacency Matrices for Clustering Directed Graphs [5.301300942803395]
Cut-based directed graph (digraph) clustering often focuses on finding dense within-cluster or sparse between-cluster connections.
For flow-based clusterings the edges between clusters tend to be oriented in one direction and have been found in migration data, food webs, and trade data.
arXiv Detail & Related papers (2022-03-02T20:07:04Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
We propose an end-to-end deep clustering algorithm, i.e., Very Compact Clusters (VCC) for the general datasets.
Our proposed approach achieves better clustering performance over most of the state-of-the-art clustering methods.
arXiv Detail & Related papers (2021-06-09T23:22:03Z) - Determinantal consensus clustering [77.34726150561087]
We propose the use of determinantal point processes or DPP for the random restart of clustering algorithms.
DPPs favor diversity of the center points within subsets.
We show through simulations that, contrary to DPP, this technique fails both to ensure diversity, and to obtain a good coverage of all data facets.
arXiv Detail & Related papers (2021-02-07T23:48:24Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - New advances in enumerative biclustering algorithms with online
partitioning [80.22629846165306]
This paper further extends RIn-Close_CVC, a biclustering algorithm capable of performing an efficient, complete, correct and non-redundant enumeration of maximal biclusters with constant values on columns in numerical datasets.
The improved algorithm is called RIn-Close_CVC3, keeps those attractive properties of RIn-Close_CVC, and is characterized by: a drastic reduction in memory usage; a consistent gain in runtime.
arXiv Detail & Related papers (2020-03-07T14:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.