論文の概要: Towards Responsible Governance of Biological Design Tools
- arxiv url: http://arxiv.org/abs/2311.15936v1
- Date: Mon, 27 Nov 2023 15:45:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 14:42:06.272549
- Title: Towards Responsible Governance of Biological Design Tools
- Title(参考訳): 生物デザインツールの責任あるガバナンスに向けて
- Authors: Richard Moulange, Max Langenkamp, Tessa Alexanian, Samuel Curtis,
Morgan Livingston
- Abstract要約: 生成機械学習の最近の進歩は、生物設計ツール(BDT)の急速な進歩を可能にした
前例のないBDTの予測精度と新規設計能力は、新しい重要な二重利用リスクをもたらす。
他のデュアルユースAIシステムと同様、BDTも悪質な問題を抱えている。
我々は、責任ある開発、リスクアセスメント、透明性、アクセス管理、サイバーセキュリティ、レジリエンスへの投資などにおいて、BDTが誤用されるリスクを軽減するためのさまざまな手段を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in generative machine learning have enabled rapid
progress in biological design tools (BDTs) such as protein structure and
sequence prediction models. The unprecedented predictive accuracy and novel
design capabilities of BDTs present new and significant dual-use risks. For
example, their predictive accuracy allows biological agents, whether vaccines
or pathogens, to be developed more quickly, while the design capabilities could
be used to discover drugs or evade DNA screening techniques. Similar to other
dual-use AI systems, BDTs present a wicked problem: how can regulators uphold
public safety without stifling innovation? We highlight how current regulatory
proposals that are primarily tailored toward large language models may be less
effective for BDTs, which require fewer computational resources to train and
are often developed in an open-source manner. We propose a range of measures to
mitigate the risk that BDTs are misused, across the areas of responsible
development, risk assessment, transparency, access management, cybersecurity,
and investing in resilience. Implementing such measures will require close
coordination between developers and governments.
- Abstract(参考訳): 生成機械学習の最近の進歩は、タンパク質構造やシーケンス予測モデルなどの生物設計ツール(BDT)の急速な進歩を可能にしている。
前例のないBDTの予測精度と新規設計能力は、新しい重要な二重利用リスクをもたらす。
例えば、それらの予測精度は、ワクチンや病原体などの生物学的エージェントをより迅速に開発することを可能にし、その設計能力は薬物の発見やDNAスクリーニングの回避に利用できる。
他のデュアルユースAIシステムと同様、BDTも悪質な問題を抱えている。
我々は、大規模な言語モデルに主に適合する現在の規制提案が、トレーニングする計算リソースを少なくし、しばしばオープンソースで開発されるBDTにとって、いかに効果が低いかを強調した。
我々は、bdtが誤用されるリスクを軽減し、責任ある開発、リスクアセスメント、透明性、アクセス管理、サイバーセキュリティ、レジリエンス投資の分野にまたがる幅広い対策を提案する。
このような措置を実施するには、開発者と政府間の緊密な調整が必要である。
関連論文リスト
- Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AIは、サイバースペースと物理空間のギャップを埋める、急速に進歩する分野だ。
VEANETでは、組み込まれたAIツインが車載AIアシスタントとして機能し、自律運転をサポートするさまざまなタスクを実行する。
論文 参考訳(メタデータ) (2024-10-02T02:20:42Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
産業用サイバー物理システム(ICPS)は、現代の製造業と産業にとって不可欠なコンポーネントである。
製品ライフサイクルを通じてデータをデジタル化することで、ICPSのDigital Twins(DT)は、現在の産業インフラからインテリジェントで適応的なインフラへの移行を可能にします。
産業用IoT(Industrial Internet of Things, IIoT)デバイスを利用すれば、DTを構築するためのデータを共有するメカニズムは、悪い選択問題の影響を受けやすい。
論文 参考訳(メタデータ) (2024-08-02T10:47:10Z) - BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
そこで,BioDiscoveryAgentを紹介した。このエージェントは,新しい実験を設計し,その結果の理由を明らかにし,仮説空間を効率的にナビゲートし,望ましい解に到達させる。
BioDiscoveryAgentは、機械学習モデルをトレーニングすることなく、新しい実験を独自に設計することができる。
6つのデータセットで関連する遺伝的摂動を予測することで、平均21%の改善が達成されている。
論文 参考訳(メタデータ) (2024-05-27T19:57:17Z) - Prioritizing High-Consequence Biological Capabilities in Evaluations of Artificial Intelligence Models [0.0]
AI評価モデルは、高頻度リスクへの対処を優先すべきである、と我々は主張する。
これらのリスクは、パンデミックなど、大衆に大規模な被害をもたらす可能性がある。
二重用途の生物学的リスクを特定し緩和する科学者の経験は、生物学的AIモデルを評価するための新しいアプローチに役立ちます。
論文 参考訳(メタデータ) (2024-05-25T16:29:17Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Generative AI(Gen AI)の応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震の変化の可能性は、この技術の潜在的なリスクについて活発に議論を巻き起こし、より厳格な規制を要求した。
この規制は、オープンソースの生成AIの誕生する分野を危険にさらす可能性がある。
論文 参考訳(メタデータ) (2024-05-14T13:37:36Z) - Generative AI in Cybersecurity [0.0]
生成人工知能(GAI)は、データ分析、パターン認識、意思決定プロセスの分野を変える上で重要な役割を担っている。
GAIは急速に進歩し、サイバーセキュリティプロトコルや規制フレームワークの現在のペースを超越している。
この研究は、マルウェア生成におけるGAIの高度な利用に対抗するために、より複雑な防衛戦略を積極的に特定し、開発する組織にとって重要な必要性を強調している。
論文 参考訳(メタデータ) (2024-05-02T19:03:11Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Artificial intelligence and biological misuse: Differentiating risks of
language models and biological design tools [0.0]
本稿では,大規模言語モデル(LLM)と生物設計ツール(BDT)の2種類のAIツールを区別する。
論文 参考訳(メタデータ) (2023-06-24T12:48:49Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
機械学習アルゴリズムの出力を監視するために必要なインフラストラクチャを評価する。
モデルのモニタリングと更新の例を示す2つのシナリオを提示します。
論文 参考訳(メタデータ) (2023-03-02T17:27:45Z) - Liability regimes in the age of AI: a use-case driven analysis of the
burden of proof [1.7510020208193926]
人工知能(AI)を利用した新しいテクノロジーは、私たちの社会をより良く、破壊的に変革する可能性を秘めている。
しかし、安全と基本的権利の両方に潜在的なリスクをもたらす、これらの方法論の固有の特性に対する懸念が高まっている。
本稿では,これらの難易度を示す3つのケーススタディと,それらに到達するための方法論について述べる。
論文 参考訳(メタデータ) (2022-11-03T13:55:36Z) - AIRSENSE-TO-ACT: A Concept Paper for COVID-19 Countermeasures based on
Artificial Intelligence algorithms and multi-sources Data Processing [0.0]
本報告では、新型コロナウイルスのパンデミックなどの緊急事態対策と対策のために、定量的かつ多スケールな要素をベースとした、対象とする対策の実施を支援するための新しいツールについて述べる。
このツールは集中型システム(Webアプリケーション)であり、単一のマルチユーザプラットフォームであり、異種データの処理に人工知能(AI)アルゴリズムに依存しており、出力レベルのリスクを生み出すことができる。
このモデルには、まず選択された入力間の相関を学習するために訓練される特定のニューラルネットワークが含まれている。
論文 参考訳(メタデータ) (2020-11-07T17:50:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。