FALCON: Fairness Learning via Contrastive Attention Approach to Continual Semantic Scene Understanding
- URL: http://arxiv.org/abs/2311.15965v2
- Date: Thu, 9 May 2024 05:41:17 GMT
- Title: FALCON: Fairness Learning via Contrastive Attention Approach to Continual Semantic Scene Understanding
- Authors: Thanh-Dat Truong, Utsav Prabhu, Bhiksha Raj, Jackson Cothren, Khoa Luu,
- Abstract summary: This paper presents a novel Fairness Learning via Contrastive Attention Approach to continual learning in semantic scene understanding.
We first introduce a new Fairness Contrastive Clustering loss to address the problems of catastrophic forgetting and fairness.
Then, we propose an attention-based visual grammar approach to effectively model the background shift problem and unknown classes.
- Score: 28.880226459932146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual Learning in semantic scene segmentation aims to continually learn new unseen classes in dynamic environments while maintaining previously learned knowledge. Prior studies focused on modeling the catastrophic forgetting and background shift challenges in continual learning. However, fairness, another major challenge that causes unfair predictions leading to low performance among major and minor classes, still needs to be well addressed. In addition, prior methods have yet to model the unknown classes well, thus resulting in producing non-discriminative features among unknown classes. This paper presents a novel Fairness Learning via Contrastive Attention Approach to continual learning in semantic scene understanding. In particular, we first introduce a new Fairness Contrastive Clustering loss to address the problems of catastrophic forgetting and fairness. Then, we propose an attention-based visual grammar approach to effectively model the background shift problem and unknown classes, producing better feature representations for different unknown classes. Through our experiments, our proposed approach achieves State-of-the-Art (SOTA) performance on different continual learning benchmarks, i.e., ADE20K, Cityscapes, and Pascal VOC. It promotes the fairness of the continual semantic segmentation model.
Related papers
- Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - CLOSER: Towards Better Representation Learning for Few-Shot Class-Incremental Learning [52.63674911541416]
Few-shot class-incremental learning (FSCIL) faces several challenges, such as overfitting and forgetting.
Our primary focus is representation learning on base classes to tackle the unique challenge of FSCIL.
We find that trying to secure the spread of features within a more confined feature space enables the learned representation to strike a better balance between transferability and discriminability.
arXiv Detail & Related papers (2024-10-08T02:23:16Z) - Tendency-driven Mutual Exclusivity for Weakly Supervised Incremental Semantic Segmentation [56.1776710527814]
Weakly Incremental Learning for Semantic (WILSS) leverages a pre-trained segmentation model to segment new classes using cost-effective and readily available image-level labels.
A prevailing way to solve WILSS is the generation of seed areas for each new class, serving as a form of pixel-level supervision.
We propose an innovative, tendency-driven relationship of mutual exclusivity, meticulously tailored to govern the behavior of the seed areas.
arXiv Detail & Related papers (2024-04-18T08:23:24Z) - Heterogeneous Contrastive Learning for Foundation Models and Beyond [73.74745053250619]
In the era of big data and Artificial Intelligence, an emerging paradigm is to utilize contrastive self-supervised learning to model large-scale heterogeneous data.
This survey critically evaluates the current landscape of heterogeneous contrastive learning for foundation models.
arXiv Detail & Related papers (2024-03-30T02:55:49Z) - Fairness Continual Learning Approach to Semantic Scene Understanding in
Open-World Environments [33.78036038343624]
We present a novel Fairness Continual Learning approach to the semantic segmentation problem.
Under the fairness objective, a new fairness continual learning framework is proposed based on class distributions.
A novel Prototypical Contrastive Clustering loss is proposed to address the significant challenges in continual learning.
arXiv Detail & Related papers (2023-05-25T04:16:07Z) - Activating the Discriminability of Novel Classes for Few-shot
Segmentation [48.542627940781095]
We propose to activate the discriminability of novel classes explicitly in both the feature encoding stage and the prediction stage for segmentation.
In the prediction stage for segmentation, we learn an Self-Refined Online Foreground-Background classifier (SROFB), which is able to refine itself using the high-confidence pixels of query image.
arXiv Detail & Related papers (2022-12-02T12:22:36Z) - Prototypical quadruplet for few-shot class incremental learning [24.814045065163135]
We propose a novel method that improves classification robustness by identifying a better embedding space using an improved contrasting loss.
Our approach retains previously acquired knowledge in the embedding space, even when trained with new classes.
We demonstrate the effectiveness of our method by showing that the embedding space remains intact after training the model with new classes and outperforms existing state-of-the-art algorithms in terms of accuracy across different sessions.
arXiv Detail & Related papers (2022-11-05T17:19:14Z) - Continual Attentive Fusion for Incremental Learning in Semantic
Segmentation [43.98082955427662]
Deep architectures trained with gradient-based techniques suffer from catastrophic forgetting.
We introduce a novel attentive feature distillation approach to mitigate catastrophic forgetting.
We also introduce a novel strategy to account for the background class in the distillation loss, thus preventing biased predictions.
arXiv Detail & Related papers (2022-02-01T14:38:53Z) - Continual Semantic Segmentation via Repulsion-Attraction of Sparse and
Disentangled Latent Representations [18.655840060559168]
This paper focuses on class incremental continual learning in semantic segmentation.
New categories are made available over time while previous training data is not retained.
The proposed continual learning scheme shapes the latent space to reduce forgetting whilst improving the recognition of novel classes.
arXiv Detail & Related papers (2021-03-10T21:02:05Z) - Deep Clustering by Semantic Contrastive Learning [67.28140787010447]
We introduce a novel variant called Semantic Contrastive Learning (SCL)
It explores the characteristics of both conventional contrastive learning and deep clustering.
It can amplify the strengths of contrastive learning and deep clustering in a unified approach.
arXiv Detail & Related papers (2021-03-03T20:20:48Z) - Self-Supervised Learning Aided Class-Incremental Lifelong Learning [17.151579393716958]
We study the issue of catastrophic forgetting in class-incremental learning (Class-IL)
In training procedure of Class-IL, as the model has no knowledge about following tasks, it would only extract features necessary for tasks learned so far, whose information is insufficient for joint classification.
We propose to combine self-supervised learning, which can provide effective representations without requiring labels, with Class-IL to partly get around this problem.
arXiv Detail & Related papers (2020-06-10T15:15:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.