論文の概要: Improved Data Generation for Enhanced Asset Allocation: A Synthetic
Dataset Approach for the Fixed Income Universe
- arxiv url: http://arxiv.org/abs/2311.16004v1
- Date: Mon, 27 Nov 2023 16:55:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 14:00:19.595542
- Title: Improved Data Generation for Enhanced Asset Allocation: A Synthetic
Dataset Approach for the Fixed Income Universe
- Title(参考訳): 資産配分強化のためのデータ生成の改善:固定所得宇宙のための合成データセットアプローチ
- Authors: Szymon Kubiak, Tillman Weyde, Oleksandr Galkin, Dan Philps and Ram
Gopal
- Abstract要約: 本稿では,アセットアロケーション手法の評価に適した合成データセットを生成する新しい手法を提案する。
得られた合成データセットは、様々な資産宇宙における資産配分手法の詳細な分析を容易にする。
- 参考スコア(独自算出の注目度): 17.64826659558015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel process for generating synthetic datasets tailored to
assess asset allocation methods and construct portfolios within the fixed
income universe. Our approach begins by enhancing the CorrGAN model to generate
synthetic correlation matrices. Subsequently, we propose an Encoder-Decoder
model that samples additional data conditioned on a given correlation matrix.
The resulting synthetic dataset facilitates in-depth analyses of asset
allocation methods across diverse asset universes. Additionally, we provide a
case study that exemplifies the use of the synthetic dataset to improve
portfolios constructed within a simulation-based asset allocation process.
- Abstract(参考訳): 固定所得宇宙における資産配分手法の評価とポートフォリオ構築に適した合成データセットを生成する新しいプロセスを提案する。
我々のアプローチは、合成相関行列を生成するためにCorrGANモデルを強化することから始まる。
次に,与えられた相関行列に基づく追加データをサンプリングするエンコーダ・デコーダモデルを提案する。
得られた合成データセットは、様々な資産宇宙における資産配分手法の詳細な分析を容易にする。
さらに,シミュレーションに基づく資産配分プロセスにおいて構築されたポートフォリオを改善するために,合成データセットの使用例を示すケーススタディを提案する。
関連論文リスト
- Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
本稿では, 複雑度の異なる3つの生成モデルを用いて, 悪意ネットワークトラフィックを合成する手法を提案する。
提案手法は,数値データをテキストに変換し,言語モデリングタスクとして再フレーミングする。
提案手法は,高忠実度合成データの生成において,最先端の生成モデルを超えている。
論文 参考訳(メタデータ) (2024-11-04T09:51:10Z) - Towards a Theoretical Understanding of Synthetic Data in LLM Post-Training: A Reverse-Bottleneck Perspective [9.590540796223715]
学習後モデルの一般化能力は生成モデルから得られる情報ゲインによって決定されることを示す。
この分析は、合成データ生成の理論基盤として機能し、後学習モデルの一般化能力との関係を強調している。
ソースコードはhttps://github.com/ZyGan 1999/Towards-a-theoretical-Understanding-of-Synthetic-Data-in-LLM-Post-Trainingで公開しています。
論文 参考訳(メタデータ) (2024-10-02T16:32:05Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Zero-shot Composed Text-Image Retrieval [72.43790281036584]
合成画像検索(CIR)の問題点を考察する。
テキストや画像などのマルチモーダル情報を融合し、クエリにマッチする画像を正確に検索し、ユーザの表現能力を拡張できるモデルをトレーニングすることを目的としている。
論文 参考訳(メタデータ) (2023-06-12T17:56:01Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Generation and Simulation of Synthetic Datasets with Copulas [0.0]
本稿では,数値変数あるいは分類変数からなる合成データセットを生成するための完全かつ信頼性の高いアルゴリズムを提案する。
我々の方法論を2つのデータセットに適用すると、SMOTEやオートエンコーダといった他の手法よりも優れたパフォーマンスが得られる。
論文 参考訳(メタデータ) (2022-03-30T13:22:44Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - SYNC: A Copula based Framework for Generating Synthetic Data from
Aggregated Sources [8.350531869939351]
ダウンスケーリングと呼ばれる合成データ生成タスクについて検討する。
我々はSynC (Synthetic Data Generation via Gaussian Copula) と呼ばれる多段階フレームワークを提案する。
私たちはこの仕事に4つの重要な貢献をしています。
論文 参考訳(メタデータ) (2020-09-20T16:36:25Z) - Hierarchical regularization networks for sparsification based learning
on noisy datasets [0.0]
階層は、連続的により微細なスケールで特定される近似空間から従う。
各スケールでのモデル一般化を促進するため,複数次元にわたる新規な射影型ペナルティ演算子も導入する。
その結果、合成データセットと実データセットの両方において、データ削減およびモデリング戦略としてのアプローチの性能が示された。
論文 参考訳(メタデータ) (2020-06-09T18:32:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。