論文の概要: Weakly-Supervised 3D Reconstruction of Clothed Humans via Normal Maps
- arxiv url: http://arxiv.org/abs/2311.16042v1
- Date: Mon, 27 Nov 2023 18:06:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 13:48:32.438361
- Title: Weakly-Supervised 3D Reconstruction of Clothed Humans via Normal Maps
- Title(参考訳): 正規地図による衣服の3次元再構築
- Authors: Jane Wu, Diego Thomas, Ronald Fedkiw
- Abstract要約: そこで本研究では,2次元正規地図を用いた布地人の3次元再構築のための新しい深層学習手法を提案する。
一つのRGB画像またはマルチビュー画像から、我々のネットワークは、静止ポーズで体を囲む四面体メッシュ上で識別された符号付き距離関数(SDF)を推定する。
ネットワーク推論と3次元再構成の両方に対するアプローチの有効性を実証する。
- 参考スコア(独自算出の注目度): 1.6462601662291156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel deep learning-based approach to the 3D reconstruction of
clothed humans using weak supervision via 2D normal maps. Given a single RGB
image or multiview images, our network infers a signed distance function (SDF)
discretized on a tetrahedral mesh surrounding the body in a rest pose.
Subsequently, inferred pose and camera parameters are used to generate a normal
map from the SDF. A key aspect of our approach is the use of Marching
Tetrahedra to (uniquely) compute a triangulated surface from the SDF on the
tetrahedral mesh, facilitating straightforward differentiation (and thus
backpropagation). Thus, given only ground truth normal maps (with no volumetric
information ground truth information), we can train the network to produce SDF
values from corresponding RGB images. Optionally, an additional multiview loss
leads to improved results. We demonstrate the efficacy of our approach for both
network inference and 3D reconstruction.
- Abstract(参考訳): そこで本研究では,2次元正規地図を用いた布地人の3次元再構築のための新しい深層学習手法を提案する。
一つのRGB画像またはマルチビュー画像から、我々のネットワークは、静止ポーズで体を囲む四面体メッシュ上で識別された符号付き距離関数(SDF)を推定する。
その後、推測されたポーズとカメラパラメータを使用して、SDFから正規マップを生成する。
我々のアプローチの重要な側面は、テトラヘドラを(一意に)四面体メッシュ上のSDFから三角面を計算し、容易に微分しやすくする(つまり、バックプロパゲーション)ことである。
したがって、基底真理正規写像のみを前提として(体積情報基底真理情報を持たない)、対応するRGB画像からSDF値を生成するようにネットワークを訓練することができる。
オプションとして、追加のマルチビュー損失は、結果の改善につながります。
ネットワーク推論と3次元再構成におけるアプローチの有効性を実証する。
関連論文リスト
- Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
シングルビュー3Dメッシュ再構成は、シングルビューRGB画像から3D形状を復元することを目的とした、基本的なコンピュータビジョンタスクである。
本稿では,一視点3Dメッシュ再構成に取り組み,未知のカテゴリのモデル一般化について検討する。
我々は、再構築におけるカテゴリ境界を断ち切るために、エンドツーエンドの2段階ネットワークであるGenMeshを提案する。
論文 参考訳(メタデータ) (2022-08-04T14:13:35Z) - Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [77.95154911528365]
3Dモーフィブルモデル(3DMM)の適合性は、その強力な3D先行性のため、顔解析に広く有用である。
以前に再建された3次元顔は、微細な形状が失われるため、視差の低下に悩まされていた。
本論文は, パーソナライズされた形状が対応する人物と同一に見えるよう, パーソナライズされた形状を捉えるための完全な解を提案する。
論文 参考訳(メタデータ) (2022-04-09T03:46:18Z) - FIRe: Fast Inverse Rendering using Directional and Signed Distance
Functions [97.5540646069663]
指向性距離関数(DDF)と呼ばれる新しいニューラルシーン表現を導入する。
DDFは単位球上で定義され、任意の方向に沿って表面までの距離を予測する。
提案手法はDDFに基づいて,提案した深度マップから3次元形状を再構成する高速アルゴリズム (FIRe) を提案する。
論文 参考訳(メタデータ) (2022-03-30T13:24:04Z) - Multi-initialization Optimization Network for Accurate 3D Human Pose and
Shape Estimation [75.44912541912252]
我々はMulti-Initialization Optimization Network(MION)という3段階のフレームワークを提案する。
第1段階では,入力サンプルの2次元キーポイントに適合する粗い3次元再構成候補を戦略的に選択する。
第2段階では, メッシュ改質トランス (MRT) を設計し, 自己保持機構を用いて粗い再構成結果をそれぞれ洗練する。
最後に,RGB画像の視覚的証拠が与えられた3次元再構成と一致するかどうかを評価することで,複数の候補から最高の結果を得るために,一貫性推定ネットワーク(CEN)を提案する。
論文 参考訳(メタデータ) (2021-12-24T02:43:58Z) - Implicit Neural Deformation for Multi-View Face Reconstruction [43.88676778013593]
マルチビューRGB画像から新しい3次元顔再構成法を提案する。
従来の3次元形態素モデルに基づく手法とは異なり,本手法は暗黙の表現を利用してリッチな幾何学的特徴を符号化する。
いくつかのベンチマークデータセットに対する実験結果から,提案手法は代替ベースラインよりも優れ,最先端の手法に比べて優れた顔再構成結果が得られることが示された。
論文 参考訳(メタデータ) (2021-12-05T07:02:53Z) - Im2Mesh GAN: Accurate 3D Hand Mesh Recovery from a Single RGB Image [31.371190180801452]
入力画像から直接ハンドメッシュを学習できることが示される。
我々は、エンドツーエンドの学習を通してメッシュを学習するための新しいタイプのGANIm2Mesh GANを提案する。
論文 参考訳(メタデータ) (2021-01-27T07:38:01Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
本稿では,高忠実度ニューラルネットワークSDFのリアルタイムレンダリングを可能にする,効率的なニューラル表現を提案する。
我々の表現は、以前の作品に比べてレンダリング速度の点で2~3桁の効率であることを示す。
論文 参考訳(メタデータ) (2021-01-26T18:50:22Z) - 3D Human Mesh Regression with Dense Correspondence [95.92326689172877]
単一の2D画像から人体の3Dメッシュを推定することは、拡張現実や人間とロボットのインタラクションといった多くのアプリケーションにおいて重要なタスクである。
前者は畳み込みニューラルネットワーク(CNN)を用いて抽出した大域的画像特徴から3Dメッシュを再構成した。
本稿では,メッシュとUV空間の局所像特徴との密接な対応性を明確に確立する,DecoMRというモデルフリーな3次元メッシュ推定フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-10T08:50:53Z) - Atlas: End-to-End 3D Scene Reconstruction from Posed Images [13.154808583020229]
RGB画像の集合からTSDF(truncated signed distance function)を直接回帰することにより,シーンのエンドツーエンドな3D再構成手法を提案する。
2D CNNは、各画像から特徴を独立して抽出し、その特徴をバックプロジェクションし、ボクセルボリュームに蓄積する。
3D CNNは蓄積した特徴を洗練し、TSDF値を予測する。
論文 参考訳(メタデータ) (2020-03-23T17:59:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。