論文の概要: Dual-Stream Attention Transformers for Sewer Defect Classification
- arxiv url: http://arxiv.org/abs/2311.16145v1
- Date: Tue, 7 Nov 2023 02:31:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-03 13:18:58.676803
- Title: Dual-Stream Attention Transformers for Sewer Defect Classification
- Title(参考訳): 下水管欠陥分類のためのデュアルストリームアテンショントランス
- Authors: Abdullah Al Redwan Newaz, Mahdi Abdeldguerfi, Kendall N. Niles, and
Joe Tom
- Abstract要約: 効率的な下水道欠陥分類のためのRGBおよび光フロー入力を処理するデュアルストリーム・ビジョン・トランスフォーマアーキテクチャを提案する。
私たちのキーとなるアイデアは、RGBとモーションストリームの相補的な強みを活用するために、自己注意の正則化を使用することです。
自己注意型レギュレータによる動作キューの活用により、RGBアテンションマップの整列と強化を行い、ネットワークが関連する入力領域に集中できるようにする。
- 参考スコア(独自算出の注目度): 2.5499055723658097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a dual-stream multi-scale vision transformer (DS-MSHViT)
architecture that processes RGB and optical flow inputs for efficient sewer
defect classification. Unlike existing methods that combine the predictions of
two separate networks trained on each modality, we jointly train a single
network with two branches for RGB and motion. Our key idea is to use
self-attention regularization to harness the complementary strengths of the RGB
and motion streams. The motion stream alone struggles to generate accurate
attention maps, as motion images lack the rich visual features present in RGB
images. To facilitate this, we introduce an attention consistency loss between
the dual streams. By leveraging motion cues through a self-attention
regularizer, we align and enhance RGB attention maps, enabling the network to
concentrate on pertinent input regions. We evaluate our data on a public
dataset as well as cross-validate our model performance in a novel dataset. Our
method outperforms existing models that utilize either convolutional neural
networks (CNNs) or multi-scale hybrid vision transformers (MSHViTs) without
employing attention regularization between the two streams.
- Abstract(参考訳): 本稿では、RGBおよび光フロー入力を効率よく下水道の欠陥分類のために処理するデュアルストリームマルチスケールビジョントランス (DS-MSHViT) アーキテクチャを提案する。
各モードでトレーニングされた2つの異なるネットワークの予測を組み合わせる既存の方法とは異なり、RGBとモーションの2つのブランチで1つのネットワークを共同でトレーニングする。
私たちのキーとなるアイデアは、RGBとモーションストリームの相補的な強みを活用するために、自己注意の正則化を使用することです。
モーションストリームだけでは、RGB画像にリッチな視覚的特徴が欠けているため、正確な注意マップを生成するのに苦労しています。
これを容易にするために、二重ストリーム間の注意一貫性損失を導入する。
自己注意型レギュレータによる動作キューの活用により、RGBアテンションマップの整列と強化を行い、ネットワークが関連する入力領域に集中できるようにする。
我々は、公開データセット上のデータを評価し、新しいデータセットでモデルパフォーマンスをクロスバリデーションする。
提案手法は,畳み込みニューラルネットワーク (cnns) とマルチスケールハイブリッドビジョントランスフォーマ (mshvits) を両ストリーム間の注意正規化を必要とせず,既存のモデルよりも優れている。
関連論文リスト
- A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
既存のデラリング変換器では、固定レンジウィンドウやチャネル次元に沿って自己アテンション機構を採用している。
本稿では,多分岐型トランスフォーマー・マンバネットワーク(Transformer-Mamba Network,TransMamba Network,Transformer-Mamba Network)を提案する。
論文 参考訳(メタデータ) (2024-08-31T10:03:19Z) - DeblurDiNAT: A Generalizable Transformer for Perceptual Image Deblurring [1.5124439914522694]
DeblurDiNATは汎用的で効率的なエンコーダ・デコーダ変換器であり、地上の真実に近いクリーンな画像を復元する。
本稿では,線形フィードフォワードネットワークと非線形デュアルステージ機能融合モジュールを提案する。
論文 参考訳(メタデータ) (2024-03-19T21:31:31Z) - Dual Aggregation Transformer for Image Super-Resolution [92.41781921611646]
画像SRのための新しいトランスモデルDual Aggregation Transformerを提案する。
DATは、ブロック間およびブロック内二重方式で、空間次元とチャネル次元にまたがる特徴を集約する。
我々のDATは現在の手法を超越している。
論文 参考訳(メタデータ) (2023-08-07T07:39:39Z) - Alignment-free HDR Deghosting with Semantics Consistent Transformer [76.91669741684173]
高ダイナミックレンジイメージングは、複数の低ダイナミックレンジ入力から情報を取得し、リアルな出力を生成することを目的としている。
既存の手法では、前景やカメラの動きによって引き起こされる入力フレーム間の空間的ずれに焦点を当てることが多い。
本研究では,SCTNet(Semantics Consistent Transformer)を用いたアライメントフリーネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T15:03:23Z) - Bridging the Gap Between Vision Transformers and Convolutional Neural
Networks on Small Datasets [91.25055890980084]
小さなデータセットでスクラッチからトレーニングする場合、ビジョントランスフォーマー(ViT)と畳み込みニューラルネットワーク(CNN)の間には、依然として極端なパフォーマンスギャップがある。
本稿では2つの帰納バイアスを緩和する解として動的ハイブリッドビジョン変換器(DHVT)を提案する。
我々のDHVTは、CIFAR-100が85.68%、22.8Mパラメータが82.3%、ImageNet-1Kが24.0Mパラメータが82.3%の軽量モデルで、最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-10-12T06:54:39Z) - CIR-Net: Cross-modality Interaction and Refinement for RGB-D Salient
Object Detection [144.66411561224507]
本稿では,CIR-Netと呼ばれる畳み込みニューラルネットワーク(CNN)モデルを提案する。
我々のネットワークは、定性的かつ定量的に最先端の塩分濃度検出器より優れています。
論文 参考訳(メタデータ) (2022-10-06T11:59:19Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
可視データと熱データ間のメッセージ通信を促進するために,新しい動的モダリティ対応フィルタ生成モジュール(MFGNet)を提案する。
我々は、2つの独立ネットワークを持つ動的モダリティ対応フィルタを生成し、その可視フィルタとサーマルフィルタをそれぞれ、対応する入力特徴写像上で動的畳み込み演算を行う。
重閉塞,高速移動,外見による問題に対処するため,新たな方向認識型目標誘導型アテンション機構を活用することで,共同で局所的・グローバル検索を行うことを提案する。
論文 参考訳(メタデータ) (2021-07-22T03:10:51Z) - SFANet: A Spectrum-aware Feature Augmentation Network for
Visible-Infrared Person Re-Identification [12.566284647658053]
クロスモダリティマッチング問題に対するSFANetという新しいスペクトル認識特徴量化ネットワークを提案する。
grayscale-spectrumイメージで学習すると、モダリティの不一致を低減し、内部構造関係を検出することができる。
特徴レベルでは、特定および粉砕可能な畳み込みブロックの数のバランスをとることにより、従来の2ストリームネットワークを改善します。
論文 参考訳(メタデータ) (2021-02-24T08:57:32Z) - Efficient Two-Stream Network for Violence Detection Using Separable
Convolutional LSTM [0.0]
Separable Convolutional LSTM(SepConvLSTM)と予め訓練されたMobileNetを活用した効率的な2ストリームディープラーニングアーキテクチャを提案する。
SepConvLSTMは、ConvLSTMの各ゲートの畳み込み操作を深さ方向に分離可能な畳み込みに置き換えて構築されます。
我々のモデルは、大きくて挑戦的なrwf-2000データセットの精度を2%以上上回っている。
論文 参考訳(メタデータ) (2021-02-21T12:01:48Z) - AdaptiveWeighted Attention Network with Camera Spectral Sensitivity
Prior for Spectral Reconstruction from RGB Images [22.26917280683572]
スペクトル再構成のための適応重み付き注意ネットワーク(AWAN)を提案する。
AWCAおよびPSNLモジュールは、チャネルワイドな特徴応答を再配置するために開発された。
NTIRE 2020 Spectral Reconstruction Challengeでは、クリーントラックで1位、リアルワールドで3位を獲得しました。
論文 参考訳(メタデータ) (2020-05-19T09:21:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。