論文の概要: DeblurDiNAT: A Generalizable Transformer for Perceptual Image Deblurring
- arxiv url: http://arxiv.org/abs/2403.13163v4
- Date: Mon, 04 Nov 2024 22:45:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:56:34.917472
- Title: DeblurDiNAT: A Generalizable Transformer for Perceptual Image Deblurring
- Title(参考訳): DeblurDiNAT: 知覚的画像劣化のための一般化可能な変換器
- Authors: Hanzhou Liu, Binghan Li, Chengkai Liu, Mi Lu,
- Abstract要約: DeblurDiNATは汎用的で効率的なエンコーダ・デコーダ変換器であり、地上の真実に近いクリーンな画像を復元する。
本稿では,線形フィードフォワードネットワークと非線形デュアルステージ機能融合モジュールを提案する。
- 参考スコア(独自算出の注目度): 1.5124439914522694
- License:
- Abstract: Although prior state-of-the-art (SOTA) deblurring networks achieve high metric scores on synthetic datasets, there are two challenges which prevent them from perceptual image deblurring. First, a deblurring model overtrained on synthetic datasets may collapse in a broad range of unseen real-world scenarios. Second, the conventional metrics PSNR and SSIM may not correctly reflect the perceptual quality observed by human eyes. To this end, we propose DeblurDiNAT, a generalizable and efficient encoder-decoder Transformer which restores clean images visually close to the ground truth. We adopt an alternating dilation factor structure to capture local and global blur patterns. We propose a local cross-channel learner to assist self-attention layers to learn short-range cross-channel relationships. In addition, we present a linear feed-forward network and a non-linear dual-stage feature fusion module for faster feature propagation across the network. Compared to nearest competitors, our model demonstrates the strongest generalization ability and achieves the best perceptual quality on mainstream image deblurring datasets with 3%-68% fewer parameters.
- Abstract(参考訳): 従来のSOTA(State-of-the-art Deblurring Network)は,合成データセットの高得点を達成できたが,知覚的画像の劣化を防ぐ2つの課題がある。
まず、合成データセットで過度に訓練された遅延モデルは、目に見えない現実世界のシナリオで崩壊する可能性がある。
第2に、従来の測度PSNRとSSIMは、人間の目で観察される知覚品質を正しく反映していない可能性がある。
この目的のために,地上の真実に近いクリーンな画像を復元する汎用的で効率的なエンコーダ・デコーダ変換器であるDeblurDiNATを提案する。
局所的およびグローバルなぼやけパターンを捉えるために、交互に拡張因子構造を採用する。
本稿では,短距離チャネル間の関係を学習するための自己注意層を支援するローカルチャネル学習者を提案する。
さらに,線形フィードフォワードネットワークと非線形デュアルステージ機能融合モジュールを提案し,ネットワーク間の高速な特徴伝搬を実現する。
最寄りの競合と比較して,本モデルは最強の一般化能力を示し,3%~68%のパラメータを持つ主流画像デブロアリングデータセット上で最高の知覚品質を実現する。
関連論文リスト
- Dual-Stream Attention Transformers for Sewer Defect Classification [2.5499055723658097]
効率的な下水道欠陥分類のためのRGBおよび光フロー入力を処理するデュアルストリーム・ビジョン・トランスフォーマアーキテクチャを提案する。
私たちのキーとなるアイデアは、RGBとモーションストリームの相補的な強みを活用するために、自己注意の正則化を使用することです。
自己注意型レギュレータによる動作キューの活用により、RGBアテンションマップの整列と強化を行い、ネットワークが関連する入力領域に集中できるようにする。
論文 参考訳(メタデータ) (2023-11-07T02:31:51Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Multi-scale Alternated Attention Transformer for Generalized Stereo
Matching [7.493797166406228]
両視野および単一視野におけるエピポーラ線の影響のバランスをとるために,Alternated Attention U-shaped Transformer (AAUformer) と呼ばれる簡易かつ高効率なネットワークを提案する。
他のモデルと比較して、我々のモデルはいくつかの主要な設計を持っている。
我々はいくつかの主流ステレオマッチングデータセットについて比較研究とアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-08-06T08:22:39Z) - Cross-Spatial Pixel Integration and Cross-Stage Feature Fusion Based
Transformer Network for Remote Sensing Image Super-Resolution [13.894645293832044]
変換器を用いたモデルでは、リモートセンシング画像超解像(RSISR)の競合性能が示されている。
本稿では,RSISRのための新しいトランスアーキテクチャであるCross-Spatial Pixel IntegrationとCross-Stage Feature Fusion Based Transformer Network (SPIFFNet)を提案する。
提案手法は,画像全体のグローバル認知と理解を効果的に促進し,機能統合の効率化を図っている。
論文 参考訳(メタデータ) (2023-07-06T13:19:06Z) - Blur Interpolation Transformer for Real-World Motion from Blur [52.10523711510876]
本稿では, ボケの時間的相関を解き明かすために, 符号化されたブラー変換器(BiT)を提案する。
マルチスケール残留スウィン変圧器ブロックに基づいて、両端の時間的監督と時間対称なアンサンブル戦略を導入する。
さらに,1対1のぼやけたビデオペアの最初の実世界のデータセットを収集するハイブリッドカメラシステムを設計する。
論文 参考訳(メタデータ) (2022-11-21T13:10:10Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN)は、ダウンスケーリングとアップスケーリングのサイクルを共同で最適化することにより、アップスケーリングの精度を大幅に向上させることができる。
本研究の1つのモデルのみをトレーニングすることにより、任意の画像再スケーリングを実現するために、単純で効果的な非可逆的再スケーリングネットワーク(IARN)を提案する。
LR出力の知覚品質を損なうことなく、双方向任意再スケーリングにおいて最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-09-26T22:22:30Z) - Transformer-Guided Convolutional Neural Network for Cross-View
Geolocalization [20.435023745201878]
本稿ではトランスフォーマー誘導型畳み込みニューラルネットワーク(TransGCNN)アーキテクチャを提案する。
我々のTransGCNNは、入力画像からCNNのバックボーン抽出特徴マップと、グローバルコンテキストをモデル化するTransformerヘッドで構成される。
CVUSAとCVACT_valでそれぞれ94.12%,84.92%の精度を達成した。
論文 参考訳(メタデータ) (2022-04-21T08:46:41Z) - Global Filter Networks for Image Classification [90.81352483076323]
本稿では,対数線形複雑度を持つ周波数領域における長期空間依存性を学習する,概念的に単純だが計算効率のよいアーキテクチャを提案する。
この結果から,GFNetはトランスフォーマー型モデルやCNNの効率,一般化能力,堅牢性において,非常に競争力のある代替手段となる可能性が示唆された。
論文 参考訳(メタデータ) (2021-07-01T17:58:16Z) - TFill: Image Completion via a Transformer-Based Architecture [69.62228639870114]
画像補完を無方向性シーケンス対シーケンス予測タスクとして扱うことを提案する。
トークン表現には,小かつ重複しないRFを持つ制限型CNNを用いる。
第2フェーズでは、可視領域と発生領域の外観整合性を向上させるために、新しい注意認識層(aal)を導入する。
論文 参考訳(メタデータ) (2021-04-02T01:42:01Z) - Thinking Fast and Slow: Efficient Text-to-Visual Retrieval with
Transformers [115.90778814368703]
目的は,大規模画像とビデオデータセットの言語検索である。
このタスクでは、独立してテキストとビジョンを共同埋め込み空間 a.k.a にマッピングする。
デュアルエンコーダは 検索スケールとして魅力的です
視覚テキスト変換器をクロスアテンションで使用する別のアプローチは、関節埋め込みよりも精度が大幅に向上する。
論文 参考訳(メタデータ) (2021-03-30T17:57:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。