論文の概要: GeoTop: Advancing Image Classification with Geometric-Topological
Analysis
- arxiv url: http://arxiv.org/abs/2311.16157v1
- Date: Wed, 8 Nov 2023 23:38:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-03 13:20:30.002132
- Title: GeoTop: Advancing Image Classification with Geometric-Topological
Analysis
- Title(参考訳): geotop:幾何トポロジー解析による画像分類の進歩
- Authors: Mariem Abaach, Ian Morilla
- Abstract要約: トポロジカルデータ解析とリプシッツ・キリング曲線は特徴抽出と分類のための強力なツールとして使用される。
両手法を組み合わせて分類精度を向上させる可能性について検討する。
このアプローチは、様々な生体医学応用における複雑な生物学的プロセスの理解を深める可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this study, we explore the application of Topological Data Analysis (TDA)
and Lipschitz-Killing Curvatures (LKCs) as powerful tools for feature
extraction and classification in the context of biomedical multiomics problems.
TDA allows us to capture topological features and patterns within complex
datasets, while LKCs provide essential geometric insights. We investigate the
potential of combining both methods to improve classification accuracy. Using a
dataset of biomedical images, we demonstrate that TDA and LKCs can effectively
extract topological and geometrical features, respectively. The combination of
these features results in enhanced classification performance compared to using
each method individually. This approach offers promising results and has the
potential to advance our understanding of complex biological processes in
various biomedical applications. Our findings highlight the value of
integrating topological and geometrical information in biomedical data
analysis. As we continue to delve into the intricacies of multiomics problems,
the fusion of these insights holds great promise for unraveling the underlying
biological complexities.
- Abstract(参考訳): 本研究では,TDA(Topological Data Analysis)とLipschitz-Killing Curvatures(LKCs)のバイオメディカル・マルチオミクス問題における特徴抽出と分類のための強力なツールとしての利用について検討する。
TDAは複雑なデータセット内のトポロジ的特徴やパターンをキャプチャし、LKCは基本的な幾何学的洞察を提供する。
両手法を組み合わせた分類精度の向上の可能性を検討する。
バイオメディカル画像のデータセットを用いて,TDAとLKCがそれぞれ,位相的特徴と幾何学的特徴を効果的に抽出できることを実証した。
これらの特徴を組み合わせることで,個々の手法と比較して分類性能が向上する。
このアプローチは有望な結果をもたらし、様々な生体医学応用における複雑な生物学的プロセスの理解を深める可能性を秘めている。
バイオメディカルデータ解析におけるトポロジカルおよび幾何学的情報の統合の意義を明らかにする。
マルチオミクス問題の複雑さを探求し続けていくにつれ、これらの知見の融合は、基礎となる生物学的複雑さを解き放つ大きな可能性を秘めている。
関連論文リスト
- Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
我々は,マルチモーダルデータに対するフレキシブルな識別条件の開発を目指している。
我々は、各潜伏成分の識別可能性を保証するとともに、サブスペース識別結果を事前の作業から拡張する。
我々の重要な理論的要素は、異なるモーダル間の因果関係の構造的空間性である。
論文 参考訳(メタデータ) (2024-11-10T16:40:27Z) - TopOC: Topological Deep Learning for Ovarian and Breast Cancer Diagnosis [3.262230127283452]
トポロジカルデータ分析は、異なる色チャネルにわたるトポロジカルパターンの評価を通じて重要な情報を抽出することで、ユニークなアプローチを提供する。
卵巣癌と乳癌では, トポロジカルな特徴を取り入れることで, 腫瘍型の分化が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2024-10-13T12:24:13Z) - Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis [7.996257103473235]
そこで我々は,全スライド画像(WSI)とバルクRNA-Seq発現データと異種グラフニューラルネットワークを統合したPGHG(Pathology-Genome Heterogeneous Graph)を提案する。
PGHGは生物学的知識誘導表現学習ネットワークと病理ゲノム不均一グラフから構成される。
腫瘍ゲノムアトラスの低悪性度グリオーマ,グリオーマ,腎乳頭状細胞癌データセットについて検討した。
論文 参考訳(メタデータ) (2024-04-11T09:07:40Z) - Hyperdimensional computing: a fast, robust and interpretable paradigm
for biological data [9.094234519404907]
多様な生物学的データソースを処理するための新しいアルゴリズムは、バイオインフォマティクスに革命をもたらした。
深層学習は、バイオインフォマティクス、アドレス配列、構造、機能解析を大きく変えてきた。
超次元コンピューティングは興味深い代替手段として登場した。
論文 参考訳(メタデータ) (2024-02-27T15:09:20Z) - A deep learning pipeline for cross-sectional and longitudinal multiview
data integration [7.424942475653412]
複数のソースからの断面データと縦データを統合するパイプラインを開発した。
線形および非線形手法を用いた変数選択/ランク付け、機能主成分分析とオイラー特性を用いた特徴抽出、高密度フィードフォワードネットワークと繰り返しニューラルネットワークを用いた結合積分と分類を含む。
炎症性腸疾患 (IBD) 研究から, このパイプラインを横断的および縦断的マルチオミクスデータ(メタゲノミクス, トランスクリプトミクス, メタボロミクス)に応用し, IBDの状態を識別する微生物経路, 代謝産物, 遺伝子を同定した。
論文 参考訳(メタデータ) (2023-12-02T22:24:35Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
本稿では,WSI分析のために,異なる種類の核間の相互関係を利用する新しいグラフベースのフレームワークを提案する。
具体的には、WSI を各ノードに "nucleus-type" 属性と各エッジに類似した意味属性を持つ異種グラフとして定式化する。
我々のフレームワークは、様々なタスクに対してかなりのマージンで最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-07-09T14:43:40Z) - RandomSCM: interpretable ensembles of sparse classifiers tailored for
omics data [59.4141628321618]
決定規則の結合や解離に基づくアンサンブル学習アルゴリズムを提案する。
モデルの解釈可能性により、高次元データのバイオマーカー発見やパターン発見に有用である。
論文 参考訳(メタデータ) (2022-08-11T13:55:04Z) - Topological Data Analysis (TDA) Techniques Enhance Hand Pose
Classification from ECoG Neural Recordings [0.0]
時系列データのトポロジ的記述を導入し、手ポーズ分類を強化する。
4ラベルの分類問題に対して,可利用データに制限のあるAC精度で頑健な結果が得られた。
論文 参考訳(メタデータ) (2021-10-09T22:04:43Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。