論文の概要: Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis
- arxiv url: http://arxiv.org/abs/2404.08023v1
- Date: Thu, 11 Apr 2024 09:07:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 16:44:18.107869
- Title: Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis
- Title(参考訳): 生体情報を用いたクロスモダリティグラフ学習による病理・ゲノム融合による生存分析
- Authors: Zeyu Zhang, Yuanshen Zhao, Jingxian Duan, Yaou Liu, Hairong Zheng, Dong Liang, Zhenyu Zhang, Zhi-Cheng Li,
- Abstract要約: そこで我々は,全スライド画像(WSI)とバルクRNA-Seq発現データと異種グラフニューラルネットワークを統合したPGHG(Pathology-Genome Heterogeneous Graph)を提案する。
PGHGは生物学的知識誘導表現学習ネットワークと病理ゲノム不均一グラフから構成される。
腫瘍ゲノムアトラスの低悪性度グリオーマ,グリオーマ,腎乳頭状細胞癌データセットについて検討した。
- 参考スコア(独自算出の注目度): 7.996257103473235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The diagnosis and prognosis of cancer are typically based on multi-modal clinical data, including histology images and genomic data, due to the complex pathogenesis and high heterogeneity. Despite the advancements in digital pathology and high-throughput genome sequencing, establishing effective multi-modal fusion models for survival prediction and revealing the potential association between histopathology and transcriptomics remains challenging. In this paper, we propose Pathology-Genome Heterogeneous Graph (PGHG) that integrates whole slide images (WSI) and bulk RNA-Seq expression data with heterogeneous graph neural network for cancer survival analysis. The PGHG consists of biological knowledge-guided representation learning network and pathology-genome heterogeneous graph. The representation learning network utilizes the biological prior knowledge of intra-modal and inter-modal data associations to guide the feature extraction. The node features of each modality are updated through attention-based graph learning strategy. Unimodal features and bi-modal fused features are extracted via attention pooling module and then used for survival prediction. We evaluate the model on low-grade gliomas, glioblastoma, and kidney renal papillary cell carcinoma datasets from the Cancer Genome Atlas (TCGA) and the First Affiliated Hospital of Zhengzhou University (FAHZU). Extensive experimental results demonstrate that the proposed method outperforms both unimodal and other multi-modal fusion models. For demonstrating the model interpretability, we also visualize the attention heatmap of pathological images and utilize integrated gradient algorithm to identify important tissue structure, biological pathways and key genes.
- Abstract(参考訳): がんの診断と予後は、典型的には、複雑な病態と高い異種性のために、組織像やゲノムデータを含む多段階の臨床データに基づいている。
デジタル病理学と高スループットゲノムシークエンシングの進歩にもかかわらず、生存予測のための効果的なマルチモーダル融合モデルを確立し、病理学と転写学の潜在的な関連を明らかにすることは依然として困難である。
本稿では,全スライド画像(WSI)とバルクRNA-Seq発現データと異種グラフニューラルネットワークを統合したPGHG(Pathology-Genome Heterogeneous Graph)を提案する。
PGHGは生物学的知識誘導表現学習ネットワークと病理ゲノム不均一グラフから構成される。
表現学習ネットワークは、モーダル内およびモーダル間データアソシエーションの生物学的事前知識を利用して特徴抽出を誘導する。
各モードのノード機能は、注意に基づくグラフ学習戦略によって更新される。
単モーダル特徴と両モーダル融合特徴は、アテンションプールモジュールを介して抽出され、生存予測に使用される。
本研究は,高次グリオーマ,グリオーマ,腎乳頭状細胞癌における癌ゲノムアトラス(TCGA)および江州大学第一附属病院(FAHZU)の診断モデルについて検討した。
実験結果から,提案手法は単モーダルおよび他のマルチモーダル融合モデルよりも優れた性能を示した。
モデル解釈可能性を示すために,病理画像の注目熱マップを可視化し,統合勾配アルゴリズムを用いて重要な組織構造,生物学的経路,重要な遺伝子を同定する。
関連論文リスト
- Comparative Analysis of Multi-Omics Integration Using Advanced Graph Neural Networks for Cancer Classification [40.45049709820343]
マルチオミクスデータ統合は、高次元性、データ複雑さ、および様々なオミクスタイプの異なる特徴により、大きな課題を生じさせる。
本研究では、グラフ畳み込みネットワーク(GCN)、グラフアテンションネットワーク(GAT)、グラフトランスフォーマーネットワーク(GTN)に基づくマルチオミクス(MO)統合のための3つのグラフニューラルネットワークアーキテクチャを評価する。
論文 参考訳(メタデータ) (2024-10-05T16:17:44Z) - GTP-4o: Modality-prompted Heterogeneous Graph Learning for Omni-modal Biomedical Representation [68.63955715643974]
Omnimodal Learning(GTP-4o)のためのモダリティプロンプト不均質グラフ
我々は、Omnimodal Learning(GTP-4o)のための革新的モダリティプロンプト不均質グラフを提案する。
論文 参考訳(メタデータ) (2024-07-08T01:06:13Z) - Histo-Genomic Knowledge Distillation For Cancer Prognosis From Histopathology Whole Slide Images [7.5123289730388825]
ゲノムインフォームドハイパーアテンションネットワーク(G-HANet)は、トレーニング中にヒストリーゲノム知識を効果的に蒸留することができる。
ネットワークは、クロスモーダル・アソシエーション・ブランチ(CAB)とハイパーアテンション・サバイバル・ブランチ(HSB)から構成される。
論文 参考訳(メタデータ) (2024-03-15T06:20:09Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
本研究では,最先端のグラフベース拡散モデルを用いて生物学的に意味のある細胞グラフを生成する。
本研究では, グラフ拡散モデルを用いて, 3次リンパ構造(TLS)の分布を正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-10-10T14:37:17Z) - Heterogeneous graphs model spatial relationships between biological
entities for breast cancer diagnosis [1.943314771739382]
グラフニューラルネットワーク(GNN)は、画像内の空間的関係をコーディングすることで、有望なソリューションを提供する。
細胞と組織グラフの空間的および階層的関係を捉えるヘテロジニアスGNNを用いた新しい手法を提案する。
また,組織と細胞グラフの複雑な関係をモデル化するトランスフォーマーアーキテクチャとクロスアテンションベースネットワークの性能を比較した。
論文 参考訳(メタデータ) (2023-07-16T19:06:29Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Deep Biological Pathway Informed Pathology-Genomic Multimodal Survival
Prediction [7.133948707208067]
本稿では,新しい生物学的経路インフォームド・病理-ゲノム深層モデルであるPONETを提案する。
提案手法は優れた予測性能を達成し,有意義な生物学的解釈を明らかにする。
論文 参考訳(メタデータ) (2023-01-06T05:24:41Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Multi-modal learning for predicting the genotype of glioma [14.93152817415408]
Isocitrate dehydrogenase (IDH)遺伝子変異はグリオーマの診断と予後に必須なバイオマーカーである。
焦点腫瘍像と幾何学的特徴をMRIから派生した脳ネットワーク特徴と統合することにより、グリオーマ遺伝子型をより正確に予測できることが期待されている。
本稿では,3つのエンコーダを用いたマルチモーダル学習フレームワークを提案し,局所腫瘍像,腫瘍幾何学,大域脳ネットワークの特徴を抽出する。
論文 参考訳(メタデータ) (2022-03-21T10:20:04Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。