論文の概要: Utilizing Multiple Inputs Autoregressive Models for Bearing Remaining
Useful Life Prediction
- arxiv url: http://arxiv.org/abs/2311.16192v1
- Date: Sun, 26 Nov 2023 09:50:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-29 21:43:19.182131
- Title: Utilizing Multiple Inputs Autoregressive Models for Bearing Remaining
Useful Life Prediction
- Title(参考訳): 余寿命予測のための複数入力自己回帰モデルの利用
- Authors: Junliang Wang, Qinghua Zhang, Guanhua Zhu, Guoxi Sun
- Abstract要約: 軸受のRUL予測において,この課題に対処する新しい多入力自己回帰モデルを提案する。
自己回帰反復により、モデルはグローバルな受容場を獲得し、一般化の限界を効果的に克服する。
PMH2012データセットの実証評価では, 同様の自己回帰アプローチを用いたバックボーンネットワークと比較して, ルート平均角誤差(RMSE)とスコアが有意に低いことが示されている。
- 参考スコア(独自算出の注目度): 3.448070371030467
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate prediction of the Remaining Useful Life (RUL) of rolling bearings is
crucial in industrial production, yet existing models often struggle with
limited generalization capabilities due to their inability to fully process all
vibration signal patterns. We introduce a novel multi-input autoregressive
model to address this challenge in RUL prediction for bearings. Our approach
uniquely integrates vibration signals with previously predicted Health
Indicator (HI) values, employing feature fusion to output current window HI
values. Through autoregressive iterations, the model attains a global receptive
field, effectively overcoming the limitations in generalization. Furthermore,
we innovatively incorporate a segmentation method and multiple training
iterations to mitigate error accumulation in autoregressive models. Empirical
evaluation on the PMH2012 dataset demonstrates that our model, compared to
other backbone networks using similar autoregressive approaches, achieves
significantly lower Root Mean Square Error (RMSE) and Score. Notably, it
outperforms traditional autoregressive models that use label values as inputs
and non-autoregressive networks, showing superior generalization abilities with
a marked lead in RMSE and Score metrics.
- Abstract(参考訳): 転がり軸受(RUL)の正確な寿命予測は工業生産において重要であるが、既存のモデルはすべての振動信号パターンを完全に処理できないため、限られた一般化能力に苦慮することが多い。
軸受のRUL予測において,この課題に対処する新しい多入力自己回帰モデルを提案する。
提案手法は, 従来予測されていたHealth Indicator (HI) 値と振動信号を一意に統合し, 現在の窓 HI 値を出力するために特徴融合を利用する。
自己回帰反復により、モデルはグローバルな受容場を獲得し、一般化の限界を効果的に克服する。
さらに,自動回帰モデルにおける誤りの蓄積を軽減するために,セグメント化手法と複数のトレーニングイテレーションを革新的に取り入れた。
PMH2012データセットの実証評価では, 同様の自己回帰アプローチを用いたバックボーンネットワークと比較して, ルート平均角誤差(RMSE)とスコアが有意に低いことが示されている。
特に、ラベル値を入力や非自己回帰的ネットワークとして使用する従来の自己回帰モデルよりも優れており、RMSEとScoreの指標において顕著なリードを持つ優れた一般化能力を示している。
関連論文リスト
- A Dynamic Approach to Stock Price Prediction: Comparing RNN and Mixture of Experts Models Across Different Volatility Profiles [0.0]
MoEフレームワークは揮発性株のRNNと安定株の線形モデルを組み合わせて、ゲーティングネットワークを介して各モデルの重量を動的に調整する。
その結果,MoE法は様々な変動性プロファイルの予測精度を著しく向上させることがわかった。
MoEモデルの適応性は個々のモデルよりも優れており、Mean Squared Error(MSE)やMean Absolute Error(MAE)などのエラーを減らすことができる。
論文 参考訳(メタデータ) (2024-10-04T14:36:21Z) - Semi-Supervised Reward Modeling via Iterative Self-Training [52.48668920483908]
本稿では,未ラベルデータを用いたRMトレーニングを強化する手法であるSemi-Supervised Reward Modeling (SSRM)を提案する。
SSRMは、追加のラベリングコストを発生させることなく、報酬モデルを大幅に改善することを示した。
全体として、SSRMは、人間が注釈付けした大量のデータへの依存を大幅に減らし、効果的な報酬モデルのトレーニングに要する全体的なコストと時間を削減する。
論文 参考訳(メタデータ) (2024-09-10T22:57:58Z) - Loss-based Bayesian Sequential Prediction of Value at Risk with a Long-Memory and Non-linear Realized Volatility Model [3.00982257854028]
リスク予測(VaR)には,長期記憶と非線形実現ボラティリティモデルクラスが提案されている。
このモデルはRNN-HARと呼ばれ、異種自己回帰(HAR)モデルを拡張している。
連続モンテカルロによる損失に基づく一般化ベイズ予想は、モデル推定と逐次予測に使用される。
論文 参考訳(メタデータ) (2024-08-24T14:17:31Z) - Distributional Refinement Network: Distributional Forecasting via Deep Learning [0.8142555609235358]
アクチュエータモデリングにおける重要なタスクは、損失の分布特性をモデル化することである。
本稿では,本質的に解釈可能なベースラインモデルとフレキシブルニューラルネットワークを組み合わせた分散リファインメントネットワーク(DRN)を提案する。
DRNは、全ての量子化の様々な効果を捉え、適切な解釈性を維持しながら予測性能を向上させる。
論文 参考訳(メタデータ) (2024-06-03T05:14:32Z) - Utilizing Autoregressive Networks for Full Lifecycle Data Generation of
Rolling Bearings for RUL Prediction [3.448070371030467]
本稿では,水平方向と垂直方向の両方で一次元振動信号を生成可能な新しいフレームワークCVGANモデルを提案する。
CVGANモデルの有効性は、PHM 2012データセットで実施された実験を通して検証される。
論文 参考訳(メタデータ) (2024-01-02T09:31:14Z) - Consensus-Adaptive RANSAC [104.87576373187426]
本稿では,パラメータ空間の探索を学習する新しいRANSACフレームワークを提案する。
注意機構は、ポイント・ツー・モデル残差のバッチで動作し、軽量のワンステップ・トランスフォーマーで見いだされたコンセンサスを考慮するために、ポイント・ツー・モデル推定状態を更新する。
論文 参考訳(メタデータ) (2023-07-26T08:25:46Z) - Maintaining Stability and Plasticity for Predictive Churn Reduction [8.971668467496055]
我々は,累積モデル組合せ (AMC) という解を提案する。
AMCは一般的な手法であり、モデルやデータ特性に応じてそれぞれ独自の利点を持ついくつかの事例を提案する。
論文 参考訳(メタデータ) (2023-05-06T20:56:20Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
GREATスコア(GREAT Score)と呼ばれる新しいフレームワークを提案する。
我々は,ロバストベンチにおける攻撃ベースモデルと比較し,高い相関性を示し,GREATスコアのコストを大幅に削減した。
GREAT Scoreは、プライバシーに敏感なブラックボックスモデルのリモート監査に使用することができる。
論文 参考訳(メタデータ) (2023-04-19T14:58:27Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
自己教師付き学習(SSL)と自己エンコーダベースモデル(AE)の相互関係が相互関係に与える影響を示す。
本研究では, 線形ヘッドの潜在バイアスから事前学習したモデルの性能を分離するために, アウト・オブ・ディストリビューション(OOD)データに基づいて訓練された線形ヘッドを用いた新しい評価手法を開発した。
論文 参考訳(メタデータ) (2022-06-17T16:18:28Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
この研究は、NLPモデル更新における回帰エラーの定量化、低減、分析に重点を置いている。
回帰フリーモデル更新を制約付き最適化問題に定式化する。
モデルアンサンブルが回帰を減らす方法を実証的に分析します。
論文 参考訳(メタデータ) (2021-05-07T03:33:00Z) - AvgOut: A Simple Output-Probability Measure to Eliminate Dull Responses [97.50616524350123]
機能エンジニアリングなしで、どの発話やトークンが退屈であるかを動的に認識する対話モデルを構築します。
最初のモデルMinAvgOutは、各バッチの出力分布を通して、ダイバーシティスコアを直接最大化する。
第2のモデルであるラベルファインチューニング(LFT)は、多様性スコアによって連続的にスケールされたラベルをソースシーケンスにプリペイドし、多様性レベルを制御する。
3つ目のモデルであるRLは強化学習を採用し、多様性スコアを報奨信号として扱う。
論文 参考訳(メタデータ) (2020-01-15T18:32:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。