Utilizing Multiple Inputs Autoregressive Models for Bearing Remaining
Useful Life Prediction
- URL: http://arxiv.org/abs/2311.16192v1
- Date: Sun, 26 Nov 2023 09:50:32 GMT
- Title: Utilizing Multiple Inputs Autoregressive Models for Bearing Remaining
Useful Life Prediction
- Authors: Junliang Wang, Qinghua Zhang, Guanhua Zhu, Guoxi Sun
- Abstract summary: We introduce a novel multi-input autoregressive model to address this challenge in RUL prediction for bearings.
Through autoregressive iterations, the model attains a global receptive field, effectively overcoming the limitations in generalization.
Empirical evaluation on the PMH2012 dataset demonstrates that our model, compared to other backbone networks using similar autoregressive approaches, achieves significantly lower Root Mean Square Error (RMSE) and Score.
- Score: 3.448070371030467
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate prediction of the Remaining Useful Life (RUL) of rolling bearings is
crucial in industrial production, yet existing models often struggle with
limited generalization capabilities due to their inability to fully process all
vibration signal patterns. We introduce a novel multi-input autoregressive
model to address this challenge in RUL prediction for bearings. Our approach
uniquely integrates vibration signals with previously predicted Health
Indicator (HI) values, employing feature fusion to output current window HI
values. Through autoregressive iterations, the model attains a global receptive
field, effectively overcoming the limitations in generalization. Furthermore,
we innovatively incorporate a segmentation method and multiple training
iterations to mitigate error accumulation in autoregressive models. Empirical
evaluation on the PMH2012 dataset demonstrates that our model, compared to
other backbone networks using similar autoregressive approaches, achieves
significantly lower Root Mean Square Error (RMSE) and Score. Notably, it
outperforms traditional autoregressive models that use label values as inputs
and non-autoregressive networks, showing superior generalization abilities with
a marked lead in RMSE and Score metrics.
Related papers
- A Dynamic Approach to Stock Price Prediction: Comparing RNN and Mixture of Experts Models Across Different Volatility Profiles [0.0]
The MoE framework combines an RNN for volatile stocks and a linear model for stable stocks, dynamically adjusting the weight of each model through a gating network.
Results indicate that the MoE approach significantly improves predictive accuracy across different volatility profiles.
The MoE model's adaptability allows it to outperform each individual model, reducing errors such as Mean Squared Error (MSE) and Mean Absolute Error (MAE)
arXiv Detail & Related papers (2024-10-04T14:36:21Z) - Semi-Supervised Reward Modeling via Iterative Self-Training [52.48668920483908]
We propose Semi-Supervised Reward Modeling (SSRM), an approach that enhances RM training using unlabeled data.
We demonstrate that SSRM significantly improves reward models without incurring additional labeling costs.
Overall, SSRM substantially reduces the dependency on large volumes of human-annotated data, thereby decreasing the overall cost and time involved in training effective reward models.
arXiv Detail & Related papers (2024-09-10T22:57:58Z) - Loss-based Bayesian Sequential Prediction of Value at Risk with a Long-Memory and Non-linear Realized Volatility Model [3.00982257854028]
Long memory and non-linear realized volatility model class is proposed for Value at Risk (VaR) forecasting.
This model, referred to as RNN-HAR, extends the heterogeneous autoregressive (HAR) model.
Loss-based generalized Bayesian inference with Sequential Monte Carlo is employed for model estimation and sequential prediction.
arXiv Detail & Related papers (2024-08-24T14:17:31Z) - Distributional Refinement Network: Distributional Forecasting via Deep Learning [0.8142555609235358]
A key task in actuarial modelling involves modelling the distributional properties of losses.
We propose a Distributional Refinement Network (DRN), which combines an inherently interpretable baseline model with a flexible neural network.
DRN captures varying effects of features across all quantiles, improving predictive performance while maintaining adequate interpretability.
arXiv Detail & Related papers (2024-06-03T05:14:32Z) - Utilizing Autoregressive Networks for Full Lifecycle Data Generation of
Rolling Bearings for RUL Prediction [3.448070371030467]
This paper introduces the CVGAN model, a novel framework capable of generating one-dimensional vibration signals in both horizontal and vertical directions.
The effectiveness of the CVGAN model is validated through experiments conducted on the PHM 2012 dataset.
arXiv Detail & Related papers (2024-01-02T09:31:14Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Maintaining Stability and Plasticity for Predictive Churn Reduction [8.971668467496055]
We propose a solution called Accumulated Model Combination (AMC)
AMC is a general technique and we propose several instances of it, each having their own advantages depending on the model and data properties.
arXiv Detail & Related papers (2023-05-06T20:56:20Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
We present a new framework, called GREAT Score, for global robustness evaluation of adversarial perturbation using generative models.
We show high correlation and significantly reduced cost of GREAT Score when compared to the attack-based model ranking on RobustBench.
GREAT Score can be used for remote auditing of privacy-sensitive black-box models.
arXiv Detail & Related papers (2023-04-19T14:58:27Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
We show how spurious correlations affect the performance of popular self-supervised learning (SSL) and auto-encoder based models (AE)
We develop a novel evaluation scheme with the linear head trained on out-of-distribution (OOD) data, to isolate the performance of the pre-trained models from a potential bias of the linear head used for evaluation.
arXiv Detail & Related papers (2022-06-17T16:18:28Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
This work focuses on quantifying, reducing and analyzing regression errors in the NLP model updates.
We formulate the regression-free model updates into a constrained optimization problem.
We empirically analyze how model ensemble reduces regression.
arXiv Detail & Related papers (2021-05-07T03:33:00Z) - AvgOut: A Simple Output-Probability Measure to Eliminate Dull Responses [97.50616524350123]
We build dialogue models that are dynamically aware of what utterances or tokens are dull without any feature-engineering.
The first model, MinAvgOut, directly maximizes the diversity score through the output distributions of each batch.
The second model, Label Fine-Tuning (LFT), prepends to the source sequence a label continuously scaled by the diversity score to control the diversity level.
The third model, RL, adopts Reinforcement Learning and treats the diversity score as a reward signal.
arXiv Detail & Related papers (2020-01-15T18:32:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.