論文の概要: Variational Exploration Module VEM: A Cloud-Native Optimization and
Validation Tool for Geospatial Modeling and AI Workflows
- arxiv url: http://arxiv.org/abs/2311.16196v1
- Date: Sun, 26 Nov 2023 23:07:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-29 21:44:44.408607
- Title: Variational Exploration Module VEM: A Cloud-Native Optimization and
Validation Tool for Geospatial Modeling and AI Workflows
- Title(参考訳): 変分探索モジュールVEM:地理空間モデリングとAIワークフローのためのクラウドネイティブ最適化と検証ツール
- Authors: Julian Kuehnert (1), Hiwot Tadesse (1), Chris Dearden (2), Rosie
Lickorish (3), Paolo Fraccaro (3), Anne Jones (3), Blair Edwards (3), Sekou
L. Remy (1), Peter Melling (4), Tim Culmer (4) ((1) IBM Research, Nairobi,
Kenya, (2) STFC Hartree Centre, Warrington, UK, (3) IBM Research, Daresbury,
UK, (4) Riskaware Ltd., Bristol, UK)
- Abstract要約: クラウドベースのデプロイメントは、これらのモデリングとAIのスケールアップに役立つ。
我々は,クラウドにデプロイされたモデリングの最適化と検証を容易にする変分探索モジュールを開発した。
モデルに依存しないモジュールの柔軟性と堅牢性は、実世界のアプリケーションを用いて実証される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geospatial observations combined with computational models have become key to
understanding the physical systems of our environment and enable the design of
best practices to reduce societal harm. Cloud-based deployments help to scale
up these modeling and AI workflows. Yet, for practitioners to make robust
conclusions, model tuning and testing is crucial, a resource intensive process
which involves the variation of model input variables. We have developed the
Variational Exploration Module which facilitates the optimization and
validation of modeling workflows deployed in the cloud by orchestrating
workflow executions and using Bayesian and machine learning-based methods to
analyze model behavior. User configurations allow the combination of diverse
sampling strategies in multi-agent environments. The flexibility and robustness
of the model-agnostic module is demonstrated using real-world applications.
- Abstract(参考訳): 地理空間観測と計算モデルが組み合わさって、我々の環境の物理的システムを理解し、社会的な害を軽減するためのベストプラクティスの設計を可能にしている。
クラウドベースのデプロイメントは、これらのモデリングとAIワークフローのスケールアップに役立つ。
しかし、実践者が堅牢な結論を出すためには、モデルチューニングとテストが不可欠であり、モデル入力変数のバリエーションを伴うリソース集約的なプロセスである。
本研究では,ワークフロー実行のオーケストレーションとベイジアンおよび機械学習に基づくモデル動作解析手法を用いて,クラウドにデプロイされたモデリングワークフローの最適化と検証を容易にする変分探索モジュールを開発した。
ユーザ設定は、マルチエージェント環境で多様なサンプリング戦略を組み合わせることができる。
モデルに依存しないモジュールの柔軟性と堅牢性は実世界のアプリケーションを用いて実証される。
関連論文リスト
- Structuring a Training Strategy to Robustify Perception Models with Realistic Image Augmentations [1.5723316845301678]
本報告では, モデルロバスト性, 性能を向上させるため, 強化したトレーニング手法を提案する。
機械学習モデルの弱点を特定し、適切な拡張を選択し、効果的なトレーニング戦略を考案する包括的フレームワークを提案する。
実験結果は,オープンソースオブジェクトの検出とセマンティックセグメンテーションモデルとデータセットに対する平均平均精度(mAP)や平均距離(mIoU)といった一般的な測定値によって測定されるモデル性能の改善を示す。
論文 参考訳(メタデータ) (2024-08-30T14:15:48Z) - Meta-Learning for Airflow Simulations with Graph Neural Networks [3.52359746858894]
本稿では,OoD(Out-of-distribution)サンプルにおける学習モデルの性能向上のためのメタラーニング手法を提案する。
具体的には,各気翼上のCFD内の気流シミュレーションをメタラーニング問題として設定し,一つの気翼形状で定義された各例を個別のタスクとして扱う。
学習モデルのOoD一般化性能向上のための提案手法の有効性を実験的に検証した。
論文 参考訳(メタデータ) (2023-06-18T19:25:13Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Slimmable Domain Adaptation [112.19652651687402]
重み付けモデルバンクを用いて、ドメイン間の一般化を改善するためのシンプルなフレームワーク、Slimmable Domain Adaptationを導入する。
私たちのフレームワークは、他の競合するアプローチを、複数のベンチマークにおいて非常に大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-06-14T06:28:04Z) - Extending Process Discovery with Model Complexity Optimization and
Cyclic States Identification: Application to Healthcare Processes [62.997667081978825]
モデル最適化のための半自動支援を実現するプロセスマイニング手法を提案する。
所望の粒度で生モデルを抽象化するモデル単純化手法が提案されている。
医療分野の異なるアプリケーションから得られた3つのデータセットを用いて、技術的ソリューションの能力を実証することを目的としている。
論文 参考訳(メタデータ) (2022-06-10T16:20:59Z) - Neural-based Modeling for Performance Tuning of Spark Data Analytics [1.2251128138369254]
クラウドデータ分析のパフォーマンスモデリングは、クラウドのパフォーマンスチューニングやその他の重要な操作に不可欠です。
最近のDeep Learning技術は、クラウドデータ分析の自動パフォーマンスモデリングのプロセスに依存している。
私達の仕事は私達の条件に適する異なったモデリングの選択の詳しい調査を提供します。
論文 参考訳(メタデータ) (2021-01-20T14:58:55Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
離散構造データに対する条件付きおよび非条件付きEMMを学習するための新しいアルゴリズムであるALOEを提案する。
エネルギー関数とサンプリング器は、新しい変分型電力繰り返しにより効率よく訓練できることを示す。
本稿では、ソフトウェアテストのためのエネルギーモデルガイド付ファジィザについて、libfuzzerのようなよく設計されたファジィエンジンに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2020-11-10T19:31:29Z) - Conditional Generative Modeling via Learning the Latent Space [54.620761775441046]
マルチモーダル空間における条件生成のための新しい枠組みを提案する。
潜在変数を使って一般化可能な学習パターンをモデル化する。
推論では、潜伏変数は複数の出力モードに対応する最適解を見つけるために最適化される。
論文 参考訳(メタデータ) (2020-10-07T03:11:34Z) - PipeSim: Trace-driven Simulation of Large-Scale AI Operations Platforms [4.060731229044571]
大規模AIシステムのためのトレース駆動シミュレーションに基づく実験・分析環境を提案する。
IBMが開発したプロダクショングレードAIプラットフォームの分析データは、包括的なシミュレーションモデルを構築するために使用される。
独立して独立したイベントシミュレーターでモデルを実装し、実験を行うためのツールキットを提供する。
論文 参考訳(メタデータ) (2020-06-22T19:55:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。