Generation of patient specific cardiac chamber models using generative
neural networks under a Bayesian framework for electroanatomical mapping
- URL: http://arxiv.org/abs/2311.16197v1
- Date: Mon, 27 Nov 2023 03:47:33 GMT
- Title: Generation of patient specific cardiac chamber models using generative
neural networks under a Bayesian framework for electroanatomical mapping
- Authors: Sunil Mathew, Jasbir Sra and Daniel B. Rowe
- Abstract summary: A probabilistic machine learning model trained on a library of CT/MRI scans of the heart can be used during electroanatomical mapping.
We introduce a Bayesian approach to surface reconstruction of cardiac chamber models from a sparse 3D point cloud data.
We show how they provide insight into what the neural network learns from the segmented CT/MRI images used to train the network.
- Score: 1.9336815376402723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroanatomical mapping is a technique used in cardiology to create a
detailed 3D map of the electrical activity in the heart. It is useful for
diagnosis, treatment planning and real time guidance in cardiac ablation
procedures to treat arrhythmias like atrial fibrillation. A probabilistic
machine learning model trained on a library of CT/MRI scans of the heart can be
used during electroanatomical mapping to generate a patient-specific 3D model
of the chamber being mapped. The use of probabilistic machine learning models
under a Bayesian framework provides a way to quantify uncertainty in results
and provide a natural framework of interpretability of the model. Here we
introduce a Bayesian approach to surface reconstruction of cardiac chamber
models from a sparse 3D point cloud data acquired during electroanatomical
mapping. We show how probabilistic graphical models trained on segmented CT/MRI
data can be used to generate cardiac chamber models from few acquired locations
thereby reducing procedure time and x-ray exposure. We show how they provide
insight into what the neural network learns from the segmented CT/MRI images
used to train the network, which provides explainability to the resulting
cardiac chamber models generated by the model.
Related papers
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
We present a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering.
Our approach separates implicit neural representation into two components, handling anatomical structure preoperatively and appearance intraoperatively.
We tested our method on retrospective patients' data from clinical cases, showing that our method outperforms state-of-the-art while meeting current clinical standards for registration.
arXiv Detail & Related papers (2024-09-18T13:40:59Z) - Probabilistic learning of the Purkinje network from the
electrocardiogram [0.0]
We propose a probabilistic approach for identifying the Purkinje network from non-invasive clinical data.
We use cardiac imaging to build an anatomically accurate model of the ventricles.
We simulate physiological electrocardiograms with a fast model.
arXiv Detail & Related papers (2023-12-15T15:34:29Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US)
Longitudinal tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology.
We present a framework for automated US image slice localization within a 3D shape representation.
arXiv Detail & Related papers (2023-09-01T10:10:46Z) - Shape of my heart: Cardiac models through learned signed distance functions [33.29148402516714]
In this work, the cardiac shape is reconstructed by means of three-dimensional deep signed distance functions with Lipschitz regularity.
For this purpose, the shapes of cardiac MRI reconstructions are learned to model the spatial relation of multiple chambers.
We demonstrate that this approach is also capable of reconstructing anatomical models from partial data, such as point clouds from a single ventricle.
arXiv Detail & Related papers (2023-08-31T09:02:53Z) - Deep Learning-based Prediction of Electrical Arrhythmia Circuits from
Cardiac Motion: An In-Silico Study [4.751438180388347]
In cardiac electrophysiology, a primary diagnostic goal is to identify electrical triggers or drivers of heart rhythm disorders.
It is currently impossible to map the three-dimensional morphology of the electrical waves throughout the entire heart muscle.
Here, we demonstrate in computer simulations that it is possible to predict three-dimensional electrical wave dynamics from ventricular deformation mechanics.
arXiv Detail & Related papers (2023-05-13T02:16:40Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
We aim to develop and validate an automated computational framework for patient-specific deposition modelling.
An image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images.
arXiv Detail & Related papers (2023-03-02T07:47:07Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - The interpretation of endobronchial ultrasound image using 3D
convolutional neural network for differentiating malignant and benign
mediastinal lesions [3.0969191504482247]
The purpose of this study is to differentiate malignant and benign lesions by using endobronchial ultrasound (EBUS) image.
Our model is robust to noise and able to fuse various imaging features and aspiration of EBUS videos.
arXiv Detail & Related papers (2021-07-29T08:38:17Z) - CNN-based Cardiac Motion Extraction to Generate Deformable Geometric
Left Ventricle Myocardial Models from Cine MRI [0.0]
We propose a framework for the development of patient-specific geometric models of LV myocardium from cine cardiac MR images.
We use the VoxelMorph-based convolutional neural network (CNN) to propagate the isosurface mesh and volume mesh of the end-diastole frame to the subsequent frames of the cardiac cycle.
arXiv Detail & Related papers (2021-03-30T21:34:29Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
We present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction.
Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets.
arXiv Detail & Related papers (2020-10-05T14:18:52Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.