Multi-Step Short-Term Wind Speed Prediction with Rank Pooling and Fast
Fourier Transformation
- URL: http://arxiv.org/abs/2211.14434v2
- Date: Fri, 5 May 2023 11:39:22 GMT
- Title: Multi-Step Short-Term Wind Speed Prediction with Rank Pooling and Fast
Fourier Transformation
- Authors: Hailong Shu
- Abstract summary: Short-term wind speed prediction is essential for economical wind power utilization.
The real-world wind speed data is typically intermittent and fluctuating, presenting great challenges to existing shallow models.
We present a novel deep hybrid model for multi-step wind speed prediction, namely LR-FFT-RP-MLP/LSTM.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Short-term wind speed prediction is essential for economical wind power
utilization. The real-world wind speed data is typically intermittent and
fluctuating, presenting great challenges to existing shallow models. In this
paper, we present a novel deep hybrid model for multi-step wind speed
prediction, namely LR-FFT-RP-MLP/LSTM (Linear Fast Fourier Transformation Rank
Pooling Multiple-Layer Perception/Long Short-Term Memory). Our hybrid model
processes the local and global input features simultaneously. We leverage Rank
Pooling (RP) for the local feature extraction to capture the temporal structure
while maintaining the temporal order. Besides, to understand the wind periodic
patterns, we exploit Fast Fourier Transformation (FFT) to extract global
features and relevant frequency components in the wind speed data. The
resulting local and global features are respectively integrated with the
original data and are fed into an MLP/LSTM layer for the initial wind speed
predictions. Finally, we leverage a linear regression layer to collaborate
these initial predictions to produce the final wind speed prediction. The
proposed hybrid model is evaluated using real wind speed data collected from
2010 to 2020, demonstrating superior forecasting capabilities when compared to
state-of-the-art single and hybrid models. Overall, this study presents a
promising approach for improving the accuracy of wind speed forecasting.
Related papers
- Short-term Wind Speed Forecasting for Power Integration in Smart Grids based on Hybrid LSSVM-SVMD Method [0.0]
Wind energy has become one of the most widely exploited renewable energy resources.
The successful integration of wind power into the grid system is contingent upon accurate wind speed forecasting models.
In this paper, a hybrid machine learning approach is developed for predicting short-term wind speed.
arXiv Detail & Related papers (2024-08-30T10:35:59Z) - Ultra-short-term multi-step wind speed prediction for wind farms based on adaptive noise reduction technology and temporal convolutional network [0.0]
This study proposes a new wind speed prediction model based on data noise reduction technology, temporal convolutional network (TCN), and gated recurrent unit (GRU)
The proposed model was validated on three wind farms in Shandong Province.
arXiv Detail & Related papers (2023-11-27T03:53:19Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages.
Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations.
Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation.
arXiv Detail & Related papers (2023-05-30T04:03:15Z) - Enhancing Short-Term Wind Speed Forecasting using Graph Attention and
Frequency-Enhanced Mechanisms [17.901334082943077]
GFST-WSF comprises a Transformer architecture for temporal feature extraction and a Graph Attention Network (GAT) for spatial feature extraction.
GAT is specifically designed to capture the complex spatial dependencies among wind speed stations.
Model time lag in wind speed correlation between adjacent wind farms caused by geographical factors.
arXiv Detail & Related papers (2023-05-19T08:50:58Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Spatio-Temporal Wind Speed Forecasting using Graph Networks and Novel
Transformer Architectures [1.278093617645299]
This study focuses on multi-step-temporal wind speed forecasting for the Norwegian continental shelf.
A graph neural network (GNN) architecture was used to extract spatial dependencies, with different update functions to learn temporal correlations.
This is the first time the LogSparse Transformer and Autoformer have been applied to wind forecasting.
arXiv Detail & Related papers (2022-08-29T13:26:20Z) - A Wavelet, AR and SVM based hybrid method for short-term wind speed
prediction [0.9137554315375922]
The wind speed time series are split into various frequency components using wavelet decomposition technique.
Since the components associated with the high-frequency range shows nature, we modelled them with autoregressive (AR) method.
The results of the hybrid method show a promising improvement in accuracy of wind speed prediction compared to that of stand-alone AR or SVM model.
arXiv Detail & Related papers (2022-03-29T07:31:16Z) - FAMLP: A Frequency-Aware MLP-Like Architecture For Domain Generalization [73.41395947275473]
We propose a novel frequency-aware architecture, in which the domain-specific features are filtered out in the transformed frequency domain.
Experiments on three benchmarks demonstrate significant performance, outperforming the state-of-the-art methods by a margin of 3%, 4% and 9%, respectively.
arXiv Detail & Related papers (2022-03-24T07:26:29Z) - GMFlow: Learning Optical Flow via Global Matching [124.57850500778277]
We propose a GMFlow framework for learning optical flow estimation.
It consists of three main components: a customized Transformer for feature enhancement, a correlation and softmax layer for global feature matching, and a self-attention layer for flow propagation.
Our new framework outperforms 32-iteration RAFT's performance on the challenging Sintel benchmark.
arXiv Detail & Related papers (2021-11-26T18:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.