論文の概要: Streaming Lossless Volumetric Compression of Medical Images Using Gated
Recurrent Convolutional Neural Network
- arxiv url: http://arxiv.org/abs/2311.16200v1
- Date: Mon, 27 Nov 2023 07:19:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 09:40:53.240598
- Title: Streaming Lossless Volumetric Compression of Medical Images Using Gated
Recurrent Convolutional Neural Network
- Title(参考訳): Gated Recurrent Convolutional Neural Network を用いた医用画像の無損失圧縮
- Authors: Qianhao Chen, Jietao Chen
- Abstract要約: 本稿では,ハードウェアフレンドリーなストリーミングロスレスボリューム圧縮フレームワークを提案する。
本稿では,多種多様な畳み込み構造と融合ゲート機構を組み合わせたゲートリカレント畳み込みニューラルネットワークを提案する。
提案手法は,堅牢な一般化能力と競争圧縮速度を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based lossless compression methods offer substantial advantages
in compressing medical volumetric images. Nevertheless, many learning-based
algorithms encounter a trade-off between practicality and compression
performance. This paper introduces a hardware-friendly streaming lossless
volumetric compression framework, utilizing merely one-thousandth of the model
weights compared to other learning-based compression frameworks. We propose a
gated recurrent convolutional neural network that combines diverse
convolutional structures and fusion gate mechanisms to capture the inter-slice
dependencies in volumetric images. Based on such contextual information, we can
predict the pixel-by-pixel distribution for entropy coding. Guided by
hardware/software co-design principles, we implement the proposed framework on
Field Programmable Gate Array to achieve enhanced real-time performance.
Extensive experimental results indicate that our method outperforms traditional
lossless volumetric compressors and state-of-the-art learning-based lossless
compression methods across various medical image benchmarks. Additionally, our
method exhibits robust generalization ability and competitive compression speed
- Abstract(参考訳): 深層学習に基づくロスレス圧縮法は、医療用ボリューム画像の圧縮において大きな利点をもたらす。
それにもかかわらず、多くの学習ベースのアルゴリズムは実用性と圧縮性能のトレードオフに遭遇する。
本稿では,他の学習ベースの圧縮フレームワークと比較して,モデル重みのわずか1/4を生かした,ハードウェアフレンドリなストリーミングロスレスボリューム圧縮フレームワークを提案する。
本稿では,様々な畳み込み構造と融合ゲート機構を組み合わせて,ボリューム画像中のスライス間の依存性を捉えるゲート再帰畳み込みニューラルネットワークを提案する。
このような文脈情報に基づいて,エントロピー符号化のための画素ごとの分布を予測できる。
ハードウェア/ソフトウェア共同設計の原則を参考に,フィールドプログラマブルゲートアレイのフレームワークを実装し,リアルタイム性能の向上を実現する。
その結果,本手法は様々な医用画像ベンチマークにおいて,従来の無損失容積圧縮機や最先端の学習に基づく無損失圧縮法よりも優れていた。
さらに,本手法は,堅牢な一般化能力と競争圧縮速度を示す。
関連論文リスト
- Implicit Neural Image Field for Biological Microscopy Image Compression [37.0218688308699]
Inlicit Neural Representation (INR) に基づく適応圧縮ワークフローを提案する。
このアプローチは、任意の形状の画像を圧縮し、任意のピクセル単位の圧縮が可能な、アプリケーション固有の圧縮目的を許容する。
我々は,我々のワークフローが高精細圧縮比を達成しただけでなく,下流解析に不可欠な詳細な情報も保存できることを,広範囲にわたる顕微鏡画像で実証した。
論文 参考訳(メタデータ) (2024-05-29T11:51:33Z) - UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Inlicit Neural Representation (INR) ネットワークは、その柔軟な圧縮比のため、顕著な汎用性を示している。
周波数領域情報を含むコードブックをINRネットワークへの事前入力として導入する。
これにより、INRの表現力が向上し、異なる画像ブロックに対して特異な条件付けが提供される。
論文 参考訳(メタデータ) (2024-05-27T05:52:13Z) - Transferable Learned Image Compression-Resistant Adversarial
Perturbations [69.79762292033553]
敵対的攻撃は容易に画像分類システムを破壊し、DNNベースの認識タスクの脆弱性を明らかにする。
我々は、学習した画像圧縮機を前処理モジュールとして利用する画像分類モデルをターゲットにした新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-06T03:03:28Z) - Image Compression and Decompression Framework Based on Latent Diffusion
Model for Breast Mammography [0.0]
本研究では,潜在拡散モデル(LDM)を用いた医用画像の圧縮・圧縮のための新しい枠組みを提案する。
LDMは, 拡散確率モデル (DDPM) の進歩を表現し, 優れた画質が得られる可能性が示唆された。
医用画像データを用いた画像アップスケーリングにおけるLCMとTorchvisionの応用の可能性について検討した。
論文 参考訳(メタデータ) (2023-10-08T22:08:59Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
本稿では、損失のない画像圧縮とほぼロスレス画像圧縮の両面において、統合された強力な深い損失+残差(DLPR)符号化フレームワークを提案する。
VAEのアプローチにおける連立損失と残留圧縮の問題を解く。
ほぼロスレスモードでは、元の残差を量子化し、与えられた$ell_infty$エラー境界を満たす。
論文 参考訳(メタデータ) (2022-09-11T12:11:56Z) - Learned Lossless Image Compression With Combined Autoregressive Models
And Attention Modules [22.213840578221678]
ロスレス画像圧縮は画像圧縮において重要な研究分野である。
近年の学習に基づく画像圧縮法は優れた性能を示した。
本稿では,ロスレス圧縮に広く用いられている手法について検討し,ロスレス圧縮に適用する。
論文 参考訳(メタデータ) (2022-08-30T03:27:05Z) - A Unified Image Preprocessing Framework For Image Compression [5.813935823171752]
そこで我々は,既存のコーデックの性能向上を図るために,Kuchenと呼ばれる統合された画像圧縮前処理フレームワークを提案する。
このフレームワークは、ハイブリッドデータラベリングシステムと、パーソナライズされた前処理をシミュレートする学習ベースのバックボーンで構成されている。
その結果,我々の統合前処理フレームワークによって最適化された現代のコーデックは,常に最先端圧縮の効率を向上することを示した。
論文 参考訳(メタデータ) (2022-08-15T10:41:00Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z) - Learning Better Lossless Compression Using Lossy Compression [100.50156325096611]
我々は、ロスレス画像圧縮システムを構築するために、強力なロスレス画像圧縮アルゴリズムであるBPGを利用する。
我々は,BPG再構成を条件とした畳み込みニューラルネットワークに基づく確率モデルを用いて,残差分布をモデル化する。
そして、この画像は、BPGが生成したビットストリームと学習した残留コーダの連結を用いて保存される。
論文 参考訳(メタデータ) (2020-03-23T11:21:52Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
まず,学習した画像の圧縮方法に関する総合的な文献調査を行う。
本稿では,最先端の学習画像圧縮手法のマイルストーンについて述べるとともに,既存の幅広い作品について概観し,その歴史的開発ルートについて考察する。
エントロピー推定と信号再構成のための粗大な超高次モデルを導入することにより、速度歪み性能の向上を実現する。
論文 参考訳(メタデータ) (2020-02-10T13:13:43Z) - A Unified End-to-End Framework for Efficient Deep Image Compression [35.156677716140635]
本稿では,3つの新しい技術に基づくEDIC(Efficient Deep Image Compression)という統合フレームワークを提案する。
具体的には、学習に基づく画像圧縮のためのオートエンコーダスタイルのネットワークを設計する。
EDIC法は,映像圧縮性能を向上させるために,Deep Video Compression (DVC) フレームワークに容易に組み込むことができる。
論文 参考訳(メタデータ) (2020-02-09T14:21:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。