論文の概要: Implicit Neural Image Field for Biological Microscopy Image Compression
- arxiv url: http://arxiv.org/abs/2405.19012v1
- Date: Wed, 29 May 2024 11:51:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 17:30:13.920073
- Title: Implicit Neural Image Field for Biological Microscopy Image Compression
- Title(参考訳): 生体顕微鏡画像圧縮のためのインシシトニューラルネットワーク
- Authors: Gaole Dai, Cheng-Ching Tseng, Qingpo Wuwu, Rongyu Zhang, Shaokang Wang, Ming Lu, Tiejun Huang, Yu Zhou, Ali Ata Tuz, Matthias Gunzer, Jianxu Chen, Shanghang Zhang,
- Abstract要約: Inlicit Neural Representation (INR) に基づく適応圧縮ワークフローを提案する。
このアプローチは、任意の形状の画像を圧縮し、任意のピクセル単位の圧縮が可能な、アプリケーション固有の圧縮目的を許容する。
我々は,我々のワークフローが高精細圧縮比を達成しただけでなく,下流解析に不可欠な詳細な情報も保存できることを,広範囲にわたる顕微鏡画像で実証した。
- 参考スコア(独自算出の注目度): 37.0218688308699
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid pace of innovation in biological microscopy imaging has led to large images, putting pressure on data storage and impeding efficient sharing, management, and visualization. This necessitates the development of efficient compression solutions. Traditional CODEC methods struggle to adapt to the diverse bioimaging data and often suffer from sub-optimal compression. In this study, we propose an adaptive compression workflow based on Implicit Neural Representation (INR). This approach permits application-specific compression objectives, capable of compressing images of any shape and arbitrary pixel-wise decompression. We demonstrated on a wide range of microscopy images from real applications that our workflow not only achieved high, controllable compression ratios (e.g., 512x) but also preserved detailed information critical for downstream analysis.
- Abstract(参考訳): 生体顕微鏡イメージングの急速な進歩は、データストレージに圧力をかけ、効率的な共有、管理、可視化を阻害する大きな画像に繋がった。
これは効率的な圧縮ソリューションの開発を必要とする。
従来のCODEC法は多様なバイオイメージングデータに適応するのに苦労し、しばしば準最適圧縮に悩まされる。
本研究では,インプリシットニューラル表現(INR)に基づく適応圧縮ワークフローを提案する。
このアプローチは、任意の形状の画像を圧縮し、任意のピクセル単位の圧縮が可能な、アプリケーション固有の圧縮目的を可能にする。
実アプリケーションからの広い範囲の顕微鏡画像において、我々のワークフローは高い、制御可能な圧縮比(例:512x)を達成しただけでなく、下流分析に不可欠な詳細な情報も保存した。
関連論文リスト
- Learned Image Compression for HE-stained Histopathological Images via Stain Deconvolution [33.69980388844034]
本稿では,一般的なJPEGアルゴリズムがさらなる圧縮に適していないことを示す。
Stain Quantized Latent Compression, a novel DL based histopathology data compression approach。
提案手法はJPEGのような従来の手法と比較して,下流タスクの分類において優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2024-06-18T13:47:17Z) - UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Inlicit Neural Representation (INR) ネットワークは、その柔軟な圧縮比のため、顕著な汎用性を示している。
周波数領域情報を含むコードブックをINRネットワークへの事前入力として導入する。
これにより、INRの表現力が向上し、異なる画像ブロックに対して特異な条件付けが提供される。
論文 参考訳(メタデータ) (2024-05-27T05:52:13Z) - MISC: Ultra-low Bitrate Image Semantic Compression Driven by Large Multimodal Model [78.4051835615796]
本稿では,マルチモーダル画像セマンティック圧縮法を提案する。
画像の意味情報を抽出するLMMエンコーダと、その意味に対応する領域を特定するマップエンコーダと、非常に圧縮されたビットストリームを生成する画像エンコーダと、前記情報に基づいて画像を再構成するデコーダとからなる。
知覚50%を節約しながら最適な一貫性と知覚結果を達成することができ、これは次世代のストレージと通信において強力な可能性を持つ。
論文 参考訳(メタデータ) (2024-02-26T17:11:11Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
敵対的攻撃は容易に画像分類システムを破壊し、DNNベースの認識タスクの脆弱性を明らかにする。
我々は、学習した画像圧縮機を前処理モジュールとして利用する画像分類モデルをターゲットにした新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-06T03:03:28Z) - Streaming Lossless Volumetric Compression of Medical Images Using Gated
Recurrent Convolutional Neural Network [0.0]
本稿では,ハードウェアフレンドリーなストリーミングロスレスボリューム圧縮フレームワークを提案する。
本稿では,多種多様な畳み込み構造と融合ゲート機構を組み合わせたゲートリカレント畳み込みニューラルネットワークを提案する。
提案手法は,堅牢な一般化能力と競争圧縮速度を示す。
論文 参考訳(メタデータ) (2023-11-27T07:19:09Z) - Image Compression and Decompression Framework Based on Latent Diffusion
Model for Breast Mammography [0.0]
本研究では,潜在拡散モデル(LDM)を用いた医用画像の圧縮・圧縮のための新しい枠組みを提案する。
LDMは, 拡散確率モデル (DDPM) の進歩を表現し, 優れた画質が得られる可能性が示唆された。
医用画像データを用いた画像アップスケーリングにおけるLCMとTorchvisionの応用の可能性について検討した。
論文 参考訳(メタデータ) (2023-10-08T22:08:59Z) - Machine Perception-Driven Image Compression: A Layered Generative
Approach [32.23554195427311]
階層型生成画像圧縮モデルを提案する。
タスクに依存しない学習に基づく圧縮モデルを提案し、様々な圧縮されたドメインベースの分析タスクを効果的にサポートする。
圧縮比、再構成画像品質、下流知覚性能の最良のバランス点を得るために、共同最適化スケジュールを採用する。
論文 参考訳(メタデータ) (2023-04-14T02:12:38Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
本稿では,最近の画像圧縮モデルの速度歪みトレードオフをさらに改善する検索自由化フレームワークについて述べる。
提案手法により,Bjontegaard-Deltaレート(BD-rate)を最大10%向上させることができる。
論文 参考訳(メタデータ) (2022-04-26T01:35:02Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z) - Discernible Image Compression [124.08063151879173]
本稿では、外観と知覚の整合性の両方を追求し、圧縮画像を作成することを目的とする。
エンコーダ・デコーダ・フレームワークに基づいて,事前学習したCNNを用いて,オリジナル画像と圧縮画像の特徴を抽出する。
ベンチマーク実験により,提案手法を用いて圧縮した画像は,その後の視覚認識・検出モデルでもよく認識できることが示された。
論文 参考訳(メタデータ) (2020-02-17T07:35:08Z) - A GAN-based Tunable Image Compression System [13.76136694287327]
本稿では、GAN(Generative Adversarial Network)を用いてコンテンツベースの圧縮を再考し、重要でない領域を再構築する。
モデルを再トレーニングすることなく、特定の圧縮比に画像を圧縮するチューナブル圧縮スキームも提案する。
論文 参考訳(メタデータ) (2020-01-18T02:40:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。