論文の概要: VehicleGAN: Pair-flexible Pose Guided Image Synthesis for Vehicle Re-identification
- arxiv url: http://arxiv.org/abs/2311.16278v3
- Date: Wed, 17 Apr 2024 17:58:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 19:20:39.460855
- Title: VehicleGAN: Pair-flexible Pose Guided Image Synthesis for Vehicle Re-identification
- Title(参考訳): VehicleGAN: 車両再識別のためのPair-flexible Poseガイド画像合成
- Authors: Baolu Li, Ping Liu, Lan Fu, Jinlong Li, Jianwu Fang, Zhigang Xu, Hongkai Yu,
- Abstract要約: 本稿では,ターゲットポーズにおける多数の車両画像の合成を提案する。
異なる交通監視カメラで同じ車両のペアのデータが現実世界では利用できない可能性があることを考慮し、VagerGANを提案する。
実データと合成データの特徴分布の違いから,効率的な特徴レベル融合によるJML(Joint Metric Learning)を提案する。
- 参考スコア(独自算出の注目度): 27.075761782915496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle Re-identification (Re-ID) has been broadly studied in the last decade; however, the different camera view angle leading to confused discrimination in the feature subspace for the vehicles of various poses, is still challenging for the Vehicle Re-ID models in the real world. To promote the Vehicle Re-ID models, this paper proposes to synthesize a large number of vehicle images in the target pose, whose idea is to project the vehicles of diverse poses into the unified target pose so as to enhance feature discrimination. Considering that the paired data of the same vehicles in different traffic surveillance cameras might be not available in the real world, we propose the first Pair-flexible Pose Guided Image Synthesis method for Vehicle Re-ID, named as VehicleGAN in this paper, which works for both supervised and unsupervised settings without the knowledge of geometric 3D models. Because of the feature distribution difference between real and synthetic data, simply training a traditional metric learning based Re-ID model with data-level fusion (i.e., data augmentation) is not satisfactory, therefore we propose a new Joint Metric Learning (JML) via effective feature-level fusion from both real and synthetic data. Intensive experimental results on the public VeRi-776 and VehicleID datasets prove the accuracy and effectiveness of our proposed VehicleGAN and JML.
- Abstract(参考訳): 車両再識別(Re-ID)は、過去10年間に広く研究されてきたが、様々なポーズの車両の特徴部分空間において、異なるカメラビュー角が混同され、現実世界の車両再識別モデルでは依然として困難である。
そこで本研究では,多種多様なポーズの車両を統一されたターゲットポーズに投影し,特徴の識別を高めることを目的として,多数の車両イメージを対象ポーズに合成することを提案する。
異なる交通監視カメラにおける同一車両のペア化データが現実世界では利用できない可能性があることを考慮し, 幾何学的3次元モデルの知識を必要とせず, 教師なしと教師なしの両方で機能する, 車両用リレーIDのためのPair-flexible Pose Guided Image Synthesis法を提案する。
実データと合成データの特徴分布の違いから,従来の計量学習に基づくRe-IDモデルをデータレベルでの融合(すなわちデータ拡張)で訓練することは不十分であり,実データと合成データの両方から有効な特徴レベルの融合を通した新しいジョイントメトリックラーニング(JML)を提案する。
パブリックなVeRi-776とVaviIDデータセットの総合的な実験結果から,提案したVaviGANとJMLの精度と有効性が確認された。
関連論文リスト
- Multi-query Vehicle Re-identification: Viewpoint-conditioned Network,
Unified Dataset and New Metric [30.344288906037345]
マルチクエリー車両Re-IDと呼ばれる,より現実的でアクセスしやすいタスクを提案する。
我々は、異なる車両視点からの補完情報を適応的に組み合わせた、新しい視点条件付きネットワーク(VCNet)を設計する。
次に、実生活の交通監視システムから6142台のカメラで撮影された、統一されたベンチマークデータセットを作成します。
第3に,クロスシーン認識能力を測定する平均クロスシーン精度(mCSP)と呼ばれる新しい評価指標を設計する。
論文 参考訳(メタデータ) (2023-05-25T06:22:03Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
自律運転における3D知覚のための2つの重要なセンサーは、カメラとLiDARである。
これら2つのモダリティを融合させることで、3次元知覚モデルの性能を大幅に向上させることができる。
我々は、最先端の核融合法を初めてベンチマークした。
論文 参考訳(メタデータ) (2022-05-30T09:35:37Z) - Discriminative-Region Attention and Orthogonal-View Generation Model for
Vehicle Re-Identification [7.5366501970852955]
複数の課題は、視覚に基づく車両のRe-ID手法の適用を妨げる。
提案したDRAモデルでは,識別領域の特徴を自動的に抽出し,類似した車両を識別することができる。
また、OVGモデルでは、入力ビュー機能に基づいてマルチビュー機能を生成し、視点ミスマッチの影響を低減することができる。
論文 参考訳(メタデータ) (2022-04-28T07:46:03Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - Discriminative Feature Representation with Spatio-temporal Cues for
Vehicle Re-identification [0.0]
車両識別(re-ID)は、様々なカメラが様々な道路網で撮影したギャラリー画像から対象車両を発見し、マッチングすることを目的としている。
車両用リIDのための新しい手がかり(DFR-ST)を用いた特徴表現を提案する。
外観や時間的情報を含むことで、埋め込み空間で堅牢な特徴を構築することができる。
論文 参考訳(メタデータ) (2020-11-13T10:50:21Z) - PerMO: Perceiving More at Once from a Single Image for Autonomous
Driving [76.35684439949094]
単一画像から完全テクスチャ化された車両の3次元モデルを検出し,セグメント化し,再構成する新しい手法を提案する。
私たちのアプローチは、ディープラーニングの強みと従来のテクニックの優雅さを組み合わせています。
我々はこれらのアルゴリズムを自律運転システムに統合した。
論文 参考訳(メタデータ) (2020-07-16T05:02:45Z) - PAMTRI: Pose-Aware Multi-Task Learning for Vehicle Re-Identification
Using Highly Randomized Synthetic Data [34.66187690224724]
車両ReIDは、(形状・外観の相違による)高いクラス内変動、(異なるメーカーによる車両間の形状・外観の類似性による)小さいクラス間変動により困難である。
本稿では,Pose-Aware Multi-Task Re-Identification (PAMTRI) フレームワークを提案する。
これは、キーポイント、ヒートマップ、およびポーズ推定からのセグメントを介して車両のポーズと形状を明示的に推論することで、視点依存性を克服する。
組込みポーズ表現によるマルチタスク学習を通じて、ReIDの実行中にセマンティックな車両属性(色と型)を共同で分類する。
論文 参考訳(メタデータ) (2020-05-02T01:29:09Z) - VehicleNet: Learning Robust Visual Representation for Vehicle
Re-identification [116.1587709521173]
我々は,4つのパブリックな車両データセットを活用することで,大規模車両データセット(VabyNet)を構築することを提案する。
VehicleNetからより堅牢な視覚表現を学習するための、シンプルで効果的な2段階プログレッシブアプローチを設計する。
AICity Challengeのプライベートテストセットにおいて,最先端の精度86.07%mAPを実現した。
論文 参考訳(メタデータ) (2020-04-14T05:06:38Z) - The Devil is in the Details: Self-Supervised Attention for Vehicle
Re-Identification [75.3310894042132]
車両識別のための自己監督的注意(SAVER)は、車両固有の識別特徴を効果的に学習するための新しいアプローチである。
我々は,SAVERがVeRi, VehicleID, Vehicle-1M, VERI-Wildのデータセットに挑戦する際の最先端性を改善することを示す。
論文 参考訳(メタデータ) (2020-04-14T02:24:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。