論文の概要: Spatially Adaptive Cloth Regression with Implicit Neural Representations
- arxiv url: http://arxiv.org/abs/2311.16344v1
- Date: Mon, 27 Nov 2023 22:20:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-29 21:05:08.592581
- Title: Spatially Adaptive Cloth Regression with Implicit Neural Representations
- Title(参考訳): 意図しない神経表現を伴う空間適応型衣服回帰
- Authors: Lei Shu, Vinicius Azevedo, Barbara Solenthaler, Markus Gross
- Abstract要約: 本稿では, 表面の暗黙的神経表現の可能性を生かした, 異方性布のレグレッション手法を提案する。
私たちの最初のコアコントリビューションは、従来のメッシュ構造への依存を減らすために設計された、革新的なメッシュフリーサンプリングアプローチです。
この結果は,同じメモリ制約を与えられたメソッドが従来の離散表現を一貫して超越している,様々な布とオブジェクトの相互作用シナリオを通して示される。
- 参考スコア(独自算出の注目度): 13.41129156720693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The accurate representation of fine-detailed cloth wrinkles poses significant
challenges in computer graphics. The inherently non-uniform structure of cloth
wrinkles mandates the employment of intricate discretization strategies, which
are frequently characterized by high computational demands and complex
methodologies. Addressing this, the research introduced in this paper
elucidates a novel anisotropic cloth regression technique that capitalizes on
the potential of implicit neural representations of surfaces. Our first core
contribution is an innovative mesh-free sampling approach, crafted to reduce
the reliance on traditional mesh structures, thereby offering greater
flexibility and accuracy in capturing fine cloth details. Our second
contribution is a novel adversarial training scheme, which is designed
meticulously to strike a harmonious balance between the sampling and simulation
objectives. The adversarial approach ensures that the wrinkles are represented
with high fidelity, while also maintaining computational efficiency. Our
results showcase through various cloth-object interaction scenarios that our
method, given the same memory constraints, consistently surpasses traditional
discrete representations, particularly when modelling highly-detailed localized
wrinkles.
- Abstract(参考訳): 細長い布のしわの正確な表現は、コンピュータグラフィックスにおいて重要な課題となる。
本質的に不均一な布のしわの構造は、複雑な離散化戦略の活用を義務付けており、高い計算要求と複雑な方法論によってしばしば特徴付けられる。
そこで,本稿では,表面の暗黙的神経表現の可能性に着目した新しい異方性布回帰手法を考案した。
私たちの最初の中心となる貢献は、従来のメッシュ構造への依存を減らすことを目的とした、革新的なメッシュフリーサンプリングアプローチです。
第2のコントリビューションは,サンプリング目標とシミュレーション目標との調和バランスを慎重に打つために設計された,新たな対向訓練スキームである。
逆のアプローチにより、シワは高い忠実度で表現され、計算効率も維持される。
提案手法は, 従来の離散表現, 特に局所化しわをモデル化する場合において, 従来の離散表現を一貫して上回る, 様々な布とオブジェクトの相互作用シナリオを提示する。
関連論文リスト
- Parallelly Tempered Generative Adversarial Networks [7.94957965474334]
生成的敵対ネットワーク(GAN)は、生成的人工知能(AI)における代表的バックボーンモデルである。
本研究は,モード崩壊の存在下でのトレーニングの不安定性と非効率性を,対象分布におけるマルチモーダルにリンクすることで解析する。
新たに開発したGAN目標関数により, 生成元は同時に全ての誘電分布を学習することができる。
論文 参考訳(メタデータ) (2024-11-18T18:01:13Z) - Practical multi-fidelity machine learning: fusion of deterministic and Bayesian models [0.34592277400656235]
マルチフィデリティ機械学習手法は、少ないリソース集約型高フィデリティデータと、豊富なが精度の低い低フィデリティデータを統合する。
低次元領域と高次元領域にまたがる問題に対する実用的多面性戦略を提案する。
論文 参考訳(メタデータ) (2024-07-21T10:40:50Z) - Invertible Neural Warp for NeRF [29.00183106905031]
本稿では、ポーズとニューラルラジアンスフィールド(NeRF)の同時最適化に取り組む。
本稿では,モデルカメラが学習可能な剛性ワープ関数として機能する,パラメータの過剰表現を提案する。
提案手法は,合成および実世界のデータセットにおいて,ポーズ推定や高忠実度再構成の点で,既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-07-17T07:14:08Z) - Space-Variant Total Variation boosted by learning techniques in few-view tomographic imaging [0.0]
本稿では,未決定の線形逆問題に対する空間変動正規化モデルの開発に焦点をあてる。
提案モデルの主な目的は,ディノベーションと細部・縁の保存のバランスを良くすることである。
畳み込みニューラルネットワークは、トレーニングにおいて弾性損失関数を用いて、基底真理像とその勾配を近似するように設計されている。
論文 参考訳(メタデータ) (2024-04-25T08:58:41Z) - Separate-and-Enhance: Compositional Finetuning for Text2Image Diffusion
Models [58.46926334842161]
この研究は、注意力の低いアクティベーションスコアとマスクオーバーラップに関連する問題を指摘し、このような不一致の根本的な理由を照らしている。
本稿では,物体マスクの重なりを低減し,注目度を最大化する2つの新しい目的,分離損失とエンハンス損失を提案する。
提案手法は従来のテスト時間適応手法と異なり,拡張性と一般化性を高める重要なパラメータの微調整に重点を置いている。
論文 参考訳(メタデータ) (2023-12-10T22:07:42Z) - Enhancing Surface Neural Implicits with Curvature-Guided Sampling and Uncertainty-Augmented Representations [37.42624848693373]
本研究では,高忠実度3次元再構成作業において,深度画像を直接消化する手法を提案する。
高効率なトレーニングデータを生成するため,簡単なサンプリング手法を提案する。
その単純さにもかかわらず、本手法は古典的および学習的ベースラインの両方に優れる。
論文 参考訳(メタデータ) (2023-06-03T12:23:17Z) - Auto-regressive Image Synthesis with Integrated Quantization [55.51231796778219]
本稿では,条件付き画像生成のための多目的フレームワークを提案する。
CNNの帰納バイアスと自己回帰の強力なシーケンスモデリングが組み込まれている。
提案手法は,最先端技術と比較して,優れた多彩な画像生成性能を実現する。
論文 参考訳(メタデータ) (2022-07-21T22:19:17Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Hybrid Predictive Coding: Inferring, Fast and Slow [62.997667081978825]
本稿では,反復型と償却型の両方を原則的に組み合わせたハイブリッド予測符号化ネットワークを提案する。
我々は,本モデルが本質的に不確実性に敏感であり,最小計算費用を用いて正確な信念を得るためにバランスを適応的にバランスさせることを実証した。
論文 参考訳(メタデータ) (2022-04-05T12:52:45Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - High-Fidelity Synthesis with Disentangled Representation [60.19657080953252]
本稿では,不整合学習と高忠実度合成のためのID-GAN(Information-Distillation Generative Adrial Network)を提案する。
提案手法は, VAEモデルを用いて非交叉表現を学習し, 高忠実度合成のためのGAN生成器に追加のニュアンス変数で学習表現を蒸留する。
単純さにもかかわらず,提案手法は高効率であり,不整合表現を用いた最先端の手法に匹敵する画像生成品質を実現する。
論文 参考訳(メタデータ) (2020-01-13T14:39:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。