論文の概要: MobileDiffusion: Instant Text-to-Image Generation on Mobile Devices
- arxiv url: http://arxiv.org/abs/2311.16567v2
- Date: Wed, 12 Jun 2024 07:16:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 23:23:18.313830
- Title: MobileDiffusion: Instant Text-to-Image Generation on Mobile Devices
- Title(参考訳): MobileDiffusion: モバイルデバイス上でのインスタントテキスト・画像生成
- Authors: Yang Zhao, Yanwu Xu, Zhisheng Xiao, Haolin Jia, Tingbo Hou,
- Abstract要約: 我々は,高効率なテキスト・画像拡散モデルである textbfMobileDiffusion を提案する。
蒸留法と拡散GAN微調整法をMobileDiffusionに応用し, それぞれ8ステップと1ステップの推論を行った。
MobileDiffusionは、モバイルデバイス上で512times512$の画像を生成するために、驚くべきTextbfsub秒の推論速度を達成する。
- 参考スコア(独自算出の注目度): 13.923293508790122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The deployment of large-scale text-to-image diffusion models on mobile devices is impeded by their substantial model size and slow inference speed. In this paper, we propose \textbf{MobileDiffusion}, a highly efficient text-to-image diffusion model obtained through extensive optimizations in both architecture and sampling techniques. We conduct a comprehensive examination of model architecture design to reduce redundancy, enhance computational efficiency, and minimize model's parameter count, while preserving image generation quality. Additionally, we employ distillation and diffusion-GAN finetuning techniques on MobileDiffusion to achieve 8-step and 1-step inference respectively. Empirical studies, conducted both quantitatively and qualitatively, demonstrate the effectiveness of our proposed techniques. MobileDiffusion achieves a remarkable \textbf{sub-second} inference speed for generating a $512\times512$ image on mobile devices, establishing a new state of the art.
- Abstract(参考訳): モバイル機器への大規模テキスト・画像拡散モデルの展開は,その相当なモデルサイズと推論速度の遅さによって妨げられる。
本稿では,高効率なテキスト・画像拡散モデルである \textbf{MobileDiffusion} を提案する。
画像生成品質を保ちながら、冗長性を低減し、計算効率を向上し、モデルのパラメータ数を最小化するために、モデルアーキテクチャ設計を網羅的に検討する。
さらに, 蒸留法と拡散GANファインタニング法をMobileDiffusionに導入し, 8段階と1段階の推論を行った。
定量的および定性的に実施した実証研究は,提案手法の有効性を実証するものである。
MobileDiffusionは、モバイルデバイス上で512\times512$の画像を生成するために、注目すべき \textbf{sub-second}推論速度を実現し、新しい最先端技術を確立している。
関連論文リスト
- OrientDream: Streamlining Text-to-3D Generation with Explicit Orientation Control [66.03885917320189]
OrientDreamは、テキストプロンプトから効率よくマルチビューで一貫した3D生成のためのカメラ指向条件付きフレームワークである。
本戦略は,2次元テキスト・画像拡散モジュールの事前学習におけるカメラ配向条件付き機能の実装を強調する。
提案手法は,一貫したマルチビュー特性を持つ高品質なNeRFモデルを生成するだけでなく,既存手法よりも最適化速度が大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-06-14T13:16:18Z) - LaDiC: Are Diffusion Models Really Inferior to Autoregressive Counterparts for Image-to-Text Generation? [10.72249123249003]
我々は拡散モデルを再検討し、全体論的文脈モデリングと並列復号化の能力を強調した。
本稿では,分割BERTを用いた新しいアーキテクチャLaDiCを導入し,キャプション専用のラテント空間を創出する。
LaDiCは、38.2 BLEU@4と126.2 CIDErのMSデータセット上で拡散ベースのメソッドの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-04-16T17:47:16Z) - YaART: Yet Another ART Rendering Technology [119.09155882164573]
そこで本研究では,ヒトの嗜好に適合する新しい生産段階のテキスト・ツー・イメージ拡散モデルYaARTを紹介した。
これらの選択がトレーニングプロセスの効率と生成された画像の品質にどのように影響するかを分析する。
高品質な画像の小さなデータセットでトレーニングされたモデルが、より大きなデータセットでトレーニングされたモデルとうまく競合できることを実証する。
論文 参考訳(メタデータ) (2024-04-08T16:51:19Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
本研究では,操作数を増やすことなく,高い品質と操作率の逆転法を導入し,再現精度を向上する。
我々は,近年の高速化拡散モデルを含む様々なサンプリングアルゴリズムとモデルを用いて,Renoise手法の性能を評価する。
論文 参考訳(メタデータ) (2024-03-21T17:52:08Z) - E$^{2}$GAN: Efficient Training of Efficient GANs for Image-to-Image Translation [69.72194342962615]
拡散モデルからGANを蒸留するプロセスは、より効率的にできるのか?
まず、一般化された特徴を持つベースGANモデルを構築し、微調整により異なる概念に適応し、スクラッチからトレーニングの必要性を排除した。
第2に,ベースモデル全体の微調整を行うのではなく,低ランク適応(LoRA)を簡易かつ効果的なランク探索プロセスで行う。
第3に、微調整に必要な最小限のデータ量を調査し、トレーニング時間を短縮する。
論文 参考訳(メタデータ) (2024-01-11T18:59:14Z) - Controlling Text-to-Image Diffusion by Orthogonal Finetuning [74.21549380288631]
そこで本研究では,テキストから画像への拡散モデルを下流タスクに適用するための原理的な微調整手法であるorthogonal Finetuning(OFT)を提案する。
既存の方法とは異なり、OFTは単位超球上の対のニューロン関係を特徴付ける超球面エネルギーを確実に保存することができる。
我々のOFTフレームワークは、生成品質と収束速度において既存の手法よりも優れていることを実証的に示す。
論文 参考訳(メタデータ) (2023-06-12T17:59:23Z) - SnapFusion: Text-to-Image Diffusion Model on Mobile Devices within Two
Seconds [88.06788636008051]
テキストから画像への拡散モデルは、プロのアーティストや写真家の作品に匹敵する自然言語の記述から素晴らしい画像を作り出すことができる。
これらのモデルは大規模で、複雑なネットワークアーキテクチャと数十のデノベーションイテレーションを持ち、計算コストが高く、実行が遅い。
モバイル端末上でテキストから画像への拡散モデルの実行を2ドル以下でアンロックする汎用的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-06-01T17:59:25Z) - Wuerstchen: An Efficient Architecture for Large-Scale Text-to-Image
Diffusion Models [6.821399706256863]
W"urstchen"は、競争性能と前例のない費用対効果を組み合わせたテキスト対画像合成の新しいアーキテクチャである。
我々の研究の重要な貢献は、詳細だが非常にコンパクトなセマンティックイメージ表現を学習する潜伏拡散技術を開発することである。
論文 参考訳(メタデータ) (2023-06-01T13:00:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。