論文の概要: OrientDream: Streamlining Text-to-3D Generation with Explicit Orientation Control
- arxiv url: http://arxiv.org/abs/2406.10000v1
- Date: Fri, 14 Jun 2024 13:16:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 13:45:23.961172
- Title: OrientDream: Streamlining Text-to-3D Generation with Explicit Orientation Control
- Title(参考訳): OrientDream: 明示的指向制御によるテキスト・ツー・3D生成
- Authors: Yuzhong Huang, Zhong Li, Zhang Chen, Zhiyuan Ren, Guosheng Lin, Fred Morstatter, Yi Xu,
- Abstract要約: OrientDreamは、テキストプロンプトから効率よくマルチビューで一貫した3D生成のためのカメラ指向条件付きフレームワークである。
本戦略は,2次元テキスト・画像拡散モジュールの事前学習におけるカメラ配向条件付き機能の実装を強調する。
提案手法は,一貫したマルチビュー特性を持つ高品質なNeRFモデルを生成するだけでなく,既存手法よりも最適化速度が大幅に向上することを示した。
- 参考スコア(独自算出の注目度): 66.03885917320189
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the evolving landscape of text-to-3D technology, Dreamfusion has showcased its proficiency by utilizing Score Distillation Sampling (SDS) to optimize implicit representations such as NeRF. This process is achieved through the distillation of pretrained large-scale text-to-image diffusion models. However, Dreamfusion encounters fidelity and efficiency constraints: it faces the multi-head Janus issue and exhibits a relatively slow optimization process. To circumvent these challenges, we introduce OrientDream, a camera orientation conditioned framework designed for efficient and multi-view consistent 3D generation from textual prompts. Our strategy emphasizes the implementation of an explicit camera orientation conditioned feature in the pre-training of a 2D text-to-image diffusion module. This feature effectively utilizes data from MVImgNet, an extensive external multi-view dataset, to refine and bolster its functionality. Subsequently, we utilize the pre-conditioned 2D images as a basis for optimizing a randomly initialized implicit representation (NeRF). This process is significantly expedited by a decoupled back-propagation technique, allowing for multiple updates of implicit parameters per optimization cycle. Our experiments reveal that our method not only produces high-quality NeRF models with consistent multi-view properties but also achieves an optimization speed significantly greater than existing methods, as quantified by comparative metrics.
- Abstract(参考訳): テキストから3D技術へと進化する中で、Dreamfusionは、Score Distillation Sampling (SDS)を用いて、NeRFのような暗黙の表現を最適化することで、その習熟度を示した。
このプロセスは、事前訓練された大規模テキスト・画像拡散モデルの蒸留によって達成される。
しかし、Dreamfusionは、マルチヘッドのJanus問題に直面し、比較的遅い最適化プロセスを示す、忠実さと効率の制約に直面している。
これらの課題を回避するために、テキストプロンプトから効率よくマルチビューで一貫した3D生成が可能なカメラ配向条件付きフレームワークOrientDreamを紹介した。
本戦略は,2次元テキスト・画像拡散モジュールの事前学習におけるカメラ配向条件付き機能の実装を強調する。
この機能は、拡張された外部マルチビューデータセットであるMVImgNetのデータを効果的に利用して、機能を洗練し、強化する。
その後、ランダム初期化暗示表現(NeRF)の最適化の基礎として、事前条件付き2D画像を利用する。
このプロセスは分離されたバックプロパゲーション技術によって大幅に高速化され、最適化サイクル毎に暗黙のパラメータを複数更新することができる。
提案手法は,一貫したマルチビュー特性を持つ高品質なNeRFモデルを生成するだけでなく,比較指標によって定量化されるように,既存手法よりも最適化速度が大幅に向上することを示した。
関連論文リスト
- Grounded Compositional and Diverse Text-to-3D with Pretrained Multi-View Diffusion Model [65.58911408026748]
複雑な合成文のプロンプトを正確に追従できる3Dアセットを生成するために,グラウンドド・ドレーマーを提案する。
まず,テキスト・ツー・3Dパイプラインのボトルネックとして,テキスト誘導4視点画像の活用を提唱する。
次に,テキストアラインな4ビュー画像生成を促すための注意再焦点機構を導入する。
論文 参考訳(メタデータ) (2024-04-28T04:05:10Z) - DreamFlow: High-Quality Text-to-3D Generation by Approximating Probability Flow [72.9209434105892]
本稿では,T2I拡散を利用したテキスト・ツー・3Dの最適化手法を提案する。
提案手法を応用して,実用的な3段階間粗大なテキスト・ツー・3D最適化フレームワークであるDreamFlowを設計する。
論文 参考訳(メタデータ) (2024-03-22T05:38:15Z) - Text-Image Conditioned Diffusion for Consistent Text-to-3D Generation [28.079441901818296]
我々は,粒度の細かい視野の整合性を明示したNeRF(Neural Radiance Fields)のテキスト・ツー・3D手法を提案する。
本手法は,既存のテキスト・ツー・3D法に対して最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-12-19T01:09:49Z) - Instant3D: Fast Text-to-3D with Sparse-View Generation and Large
Reconstruction Model [68.98311213582949]
テキストプロンプトから高品質で多様な3Dアセットをフィードフォワードで生成する新しい手法であるInstant3Dを提案する。
提案手法は,従来の最適化手法よりも2桁早く,20秒以内に高画質の多種多様な3Dアセットを生成できる。
論文 参考訳(メタデータ) (2023-11-10T18:03:44Z) - Wonder3D: Single Image to 3D using Cross-Domain Diffusion [105.16622018766236]
Wonder3Dは、単一視点画像から高忠実なテクスチャメッシュを効率的に生成する新しい手法である。
画像から3Dまでのタスクの品質,一貫性,効率性を総括的に改善するため,領域間拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-10-23T15:02:23Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3Dは拡散モデルに基づく3Dアバター生成のためのテキスト・画像誘導生成モデルである。
我々のフレームワークは、トポロジカルかつ構造的に正しい幾何と高分解能なテクスチャを生成する。
論文 参考訳(メタデータ) (2023-08-18T17:55:47Z) - DreamTime: An Improved Optimization Strategy for Diffusion-Guided 3D Generation [24.042803966469066]
本研究は, 点数蒸留における3次元最適化プロセスと一様時間ステップサンプリングの矛盾が, これらの制約の主な原因であることを示す。
本稿では, 単調な非増加関数を用いた時間ステップサンプリングを優先し, 3次元最適化プロセスと拡散モデルのサンプリングプロセスとの整合性を示す。
私たちのシンプルなデザイン変更は、より高速なコンバージェンス、より良い品質、多様性で3Dコンテンツ作成を大幅に改善します。
論文 参考訳(メタデータ) (2023-06-21T17:59:45Z) - Efficient Text-Guided 3D-Aware Portrait Generation with Score
Distillation Sampling on Distribution [28.526714129927093]
本研究では,DreamPortraitを提案する。DreamPortraitは,テキスト誘導型3D画像の単一フォワードパスで効率よく作成することを目的としている。
さらに,テキストと3D認識空間の対応をモデルが明示的に知覚できるように,3D対応のゲート・アテンション機構を設計する。
論文 参考訳(メタデータ) (2023-06-03T11:08:38Z) - HiFA: High-fidelity Text-to-3D Generation with Advanced Diffusion
Guidance [19.252300247300145]
本研究は,高品質なテキスト・ツー・3D生成を実現するための全体的サンプリングと平滑化手法を提案する。
テキスト・画像拡散モデルの潜時空間と画像空間における復調スコアを計算する。
単一段最適化において高品質なレンダリングを生成するため,我々はNeRF線に沿ったz座標の分散の正則化を提案する。
論文 参考訳(メタデータ) (2023-05-30T05:56:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。