Multi-Channel Cross Modal Detection of Synthetic Face Images
- URL: http://arxiv.org/abs/2311.16773v1
- Date: Tue, 28 Nov 2023 13:30:10 GMT
- Title: Multi-Channel Cross Modal Detection of Synthetic Face Images
- Authors: M. Ibsen, C. Rathgeb, S. Marcel, C. Busch
- Abstract summary: Synthetically generated face images have shown to be indistinguishable from real images by humans.
New and improved generative models are proposed with rapid speed and arbitrary image post-processing can be applied.
We propose a multi-channel architecture for detecting entirely synthetic face images.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetically generated face images have shown to be indistinguishable from
real images by humans and as such can lead to a lack of trust in digital
content as they can, for instance, be used to spread misinformation. Therefore,
the need to develop algorithms for detecting entirely synthetic face images is
apparent. Of interest are images generated by state-of-the-art deep
learning-based models, as these exhibit a high level of visual realism. Recent
works have demonstrated that detecting such synthetic face images under
realistic circumstances remains difficult as new and improved generative models
are proposed with rapid speed and arbitrary image post-processing can be
applied. In this work, we propose a multi-channel architecture for detecting
entirely synthetic face images which analyses information both in the frequency
and visible spectra using Cross Modal Focal Loss. We compare the proposed
architecture with several related architectures trained using Binary Cross
Entropy and show in cross-model experiments that the proposed architecture
supervised using Cross Modal Focal Loss, in general, achieves most competitive
performance.
Related papers
- Detection of Synthetic Face Images: Accuracy, Robustness, Generalization [1.757194730633422]
We find that a simple model trained on a specific image generator can achieve near-perfect accuracy in separating synthetic and real images.
The model turned out to be vulnerable to adversarial attacks and does not generalize to unseen generators.
arXiv Detail & Related papers (2024-06-25T13:34:50Z) - Generalizable Synthetic Image Detection via Language-guided Contrastive
Learning [22.4158195581231]
malevolent use of synthetic images, such as the dissemination of fake news or the creation of fake profiles, raises significant concerns regarding the authenticity of images.
We propose a simple yet very effective synthetic image detection method via a language-guided contrastive learning and a new formulation of the detection problem.
It is shown that our proposed LanguAge-guided SynThEsis Detection (LASTED) model achieves much improved generalizability to unseen image generation models.
arXiv Detail & Related papers (2023-05-23T08:13:27Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
We show how denoising diffusion models can be applied for high-fidelity person image synthesis.
Our results on two large-scale benchmarks and a user study demonstrate the photorealism of our proposed approach under challenging scenarios.
arXiv Detail & Related papers (2022-11-22T18:59:50Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
We propose a joint learning strategy with deep texture and high-frequency features for CG image detection.
A semantic segmentation map is generated to guide the affine transformation operation.
The combination of the original image and the high-frequency components of the original and rendered images are fed into a multi-branch neural network equipped with attention mechanisms.
arXiv Detail & Related papers (2022-09-07T17:30:40Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
We devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the performance gap.
We also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
arXiv Detail & Related papers (2021-08-18T03:41:54Z) - Identity-Aware CycleGAN for Face Photo-Sketch Synthesis and Recognition [61.87842307164351]
We first propose an Identity-Aware CycleGAN (IACycleGAN) model that applies a new perceptual loss to supervise the image generation network.
It improves CycleGAN on photo-sketch synthesis by paying more attention to the synthesis of key facial regions, such as eyes and nose.
We develop a mutual optimization procedure between the synthesis model and the recognition model, which iteratively synthesizes better images by IACycleGAN.
arXiv Detail & Related papers (2021-03-30T01:30:08Z) - CNN Detection of GAN-Generated Face Images based on Cross-Band
Co-occurrences Analysis [34.41021278275805]
Last-generation GAN models allow to generate synthetic images which are visually indistinguishable from natural ones.
We propose a method for distinguishing GAN-generated from natural images by exploiting inconsistencies among spectral bands.
arXiv Detail & Related papers (2020-07-25T10:55:04Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
We propose an autoencoder for joint generation of realistic images from synthetic 3D models while simultaneously decomposing real images into their intrinsic shape and appearance properties.
Our experiments confirm that a joint treatment of rendering and decomposition is indeed beneficial and that our approach outperforms state-of-the-art image-to-image translation baselines both qualitatively and quantitatively.
arXiv Detail & Related papers (2020-06-29T12:53:58Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
We propose a novel deep learning architecture with a stage-wise estimation of shape and SVBRDF.
We create a large-scale synthetic training dataset with domain-randomized geometry and realistic materials.
Experiments on both synthetic and real-world datasets show that our network trained on a synthetic dataset can generalize well to real-world images.
arXiv Detail & Related papers (2020-04-01T12:56:13Z) - Learning Inverse Rendering of Faces from Real-world Videos [52.313931830408386]
Existing methods decompose a face image into three components (albedo, normal, and illumination) by supervised training on synthetic data.
We propose a weakly supervised training approach to train our model on real face videos, based on the assumption of consistency of albedo and normal.
Our network is trained on both real and synthetic data, benefiting from both.
arXiv Detail & Related papers (2020-03-26T17:26:40Z) - Leveraging Frequency Analysis for Deep Fake Image Recognition [35.1862941141084]
Deep neural networks can generate images that are astonishingly realistic, so much so that it is often hard for humans to distinguish them from actual photos.
These achievements have been largely made possible by Generative Adversarial Networks (GANs)
In this paper, we show that in frequency space, GAN-generated images exhibit severe artifacts that can be easily identified.
arXiv Detail & Related papers (2020-03-19T11:06:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.